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Abstract 

A data processing method for an expendable conductivity-temperature-depth profiler (XCTD) to 

obtain high quality XCTD data is proposed. By adjusting the mismatch of the response time of 

the temperature and conductivity sensors, systematic error (on the order of –0.05) in XCTD 

salinity data can be eliminated in a region having a strong vertical temperature gradient (>0.2 °C 

m–1), such as in the main thermocline of the nearshore side of the Kuroshio axis and in the 

seasonal thermocline in the subarctic North Pacific. The systematic errors in XCTD depth data 

from two cruises were evaluated by comparing CTD and XCTD data taken simultaneously 

during each cruise. The XCTD depths were in good agreement with the CTD depths from one 

cruise, but depth-dependent depth errors from the other cruise were found. The cause of the 

depth error is unknown but may have occurred because the terminal velocity for the XCTD 

probes was much less (–0.0428 m s–1) than that provided by the manufacturer for the later cruise. 

The results suggest that XCTD and expendable bathythermograph (XBT) observations may 

have a similar depth error, because XBT and XCTD do not have pressure sensors and therefore 

depth is inferred from the fall rate of the probe. Simultaneous CTD observations are required to 

evaluate the XBT/XCTD depth error.  
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1. Introduction 

Since the 1960s, the expendable bathythermograph (XBT) has been widely used globally 

to measure upper ocean thermal structures (e.g., Wijffels et al. 2008), and since the 1990s, upper 

ocean salinity structures have been measured by using an expendable 

conductivity–temperature–depth profiler (XCTD) (e.g., Johnson 1995; Uehara et al. 2008). 

Although XBT/XCTD data can be easily collected from research vessels and other ships on a 

voluntary basis, systematic error can be a problem because the XBT and XCTD do not have 

pressure sensors and therefore depth is inferred from the fall rate of the probe. In addition, 

post-cruise calibration of temperature and conductivity sensors is not possible for expendable 

instruments. For example, Gouretski and Koltermann (2007) suggested that the global XBT 

dataset has a time-varying warm bias, and Wijffels et al. (2008) demonstrated this to be largely 

due to changes in the fall rate of the XBT probes.  

To use XBT/XCTD data for climate change research, we must apply data processing and 

quality control measures that go beyond the manufacturer’s specifications. In this study, we 

propose a data processing method for obtaining high quality XCTD data. The method eliminates 

systematic error in XCTD salinity data that is due to the mismatch of the response time of the 

temperature and conductivity sensors. We also evaluated systematic error in XCTD depth data 

by comparing the data to simultaneously measured CTD data.  

 

2. Materials 

We used TSK XCTD-1 and XCTD-2 probes (Tsurumi-Seiki Co. Ltd., Kanagawa, Japan) 
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for this study. The nominal uncertainties for the two probes, as specified by the manufacturer, are 

listed in Table 1. The fall-rate equation provided by the manufacturer was used to infer depth (Z 

in meters): 

 Z = at – bt2,                                               (1) 

where t is the elapsed time in seconds from probe entry into the water, and a (terminal velocity) 

and b (acceleration) are the empirical coefficients (Mizuno and Watanabe 1998; Koso et al. 

2005) (Table 2). The data sampling interval was 0.04 s.   

XCTD data were obtained during the R/V Hakuho-maru cruise KH-02-3 leg 1 (15–20 

September 2002) (Uchida et al. 2008) and the R/V Mirai cruises MR07-04 (12–14 August 2007) 

(Kawano et al. 2009) and MR09-01 leg 1 and 2 (21 April–14 June 2009) (Murata et al. 2009). 

XCTD data were acquired with the MK-130 data acquisition system (Tsurumi-Seiki Co., Ltd.) 

for the KH-02-3 and MR09-01 cruises and with the MK-100 data acquisition system 

(Tsurumi-Seiki Co., Ltd.) for the MR07-0 4 cruise. The number and location of XCTD casts are 

shown in Fig. 1.  

We used an SBE 9plus CTD system (Sea-Bird Electronics, Inc., Bellevue, WA) as the 

comparative system on these cruises. The CTD pressure sensors were calibrated before each 

cruise against a dead-weight piston gauge (Bundenberg Gauge Co. Ltd., Manchester, UK), and 

the CTD temperature sensors were calibrated in situ against a Sea-Bird Electronics (SBE 35) 

deep ocean reference thermometer (Uchida et al. 2007) for the R/V Mirai cruises. For the R/V 

Hakuho-maru cruise, the CTD pressure and temperature sensors were calibrated before the 

cruise by the manufacturer. The CTD salinity data were corrected using the in situ water sample 
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data. Salinity measurements for the water samples were conducted with a Guildline Autosal 

model 8400B salinometer (Guildline Instruments Ltd., Ontario, Canada) for the R/V Mirai 

cruises and with a Guildline Portasal model 8410A salinometer for the R/V Hakuho-maru cruise. 

The salinometers were standardized with International Association for Physical Science of the 

Ocean (IAPSO) Standard Seawater. The batch-to-batch differences in recent batches from P130 

to P150 of the standard seawater were less than 0.001 (Kawano et al. 2006).  

Simultaneous observations using the XCTD and CTD probes were carried out during 

cruises KH-02-3 and MR09-01, except for the easternmost five casts of cruise MR09-01. The 

XCTD probes were usually launched about 10 min after the start of CTD measurements. For 

cruise MR07-04, XCTD observations were carried out between the CTD stations. CTD data 

averaged over 1-dbar intervals were used for comparing to the XCTD data. 

 

3. Data processing 

a. Data processing sequence 

Processing and quality control of the XCTD data were based on a method described in 

Uchida and Imawaki (2008) with slight modification. The data processing sequence used in the 

reduction of XCTD data was as follows:  

1) Raw temperature and conductivity data from the first 32 scans (about 4.3 m) of the 

XCTD data were deleted to remove the effect of the start-up transient change (Kizu and 

Hanawa 2002) of XCTD measurements. Data were also deleted after the probe made 

contact with the bottom. Spikes in the temperature and conductivity profiles were 
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manually removed. Gaps caused by the deletion of data were linearly interpolated when 

the data gap was within 15 scans (about 2 m).  

2) Temperature and conductivity data were low-pass filtered using the running mean filter 

with a window of 15 scans (about 2 m).  

3) Conductivity data were advanced by 1.5 scans (about 0.2 m), instead of 2 scans as 

described in Uchida and Imawaki (2008), relative to the temperature data to correct the 

mismatch in response time of the sensors.  

4) Salinity was calculated from pressure, temperature, and conductivity data. The pressure 

data were calculated by using the relation between hydrostatic pressure and depth.  

5) The data were sampled at 1-dbar or 1-m intervals.  

6) Salinity biases of the XCTD data were estimated by comparing temperature and 

salinity relationships in the deep ocean obtained from the CTD and XCTD data and the 

estimated salinity biases were subtracted from the original XCTD salinity data.  

The data processing procedures for steps 2)–4) and 6) above are described in detail in the 

following subsections.  

 

b. Noise reduction 

The manufacturer’s data processing software interpolates and samples XCTD temperature 

and salinity data at 1-m intervals to reduce the size of the data set. Salinity data is low-pass 

filtered using the running mean filter with a window of 13 scans (about 1.7 m) before 

interpolation to reduce salinity noise. However, distinct spectral spikes present in not only 
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conductivity profiles but also temperature profiles at frequencies of 5 and 10 Hz, corresponding 

to 1 and 2 cycles per five scans (Gille et al. 2009). Low-pass filtered data by using the filters of 

Gille et al. (2009) is biased (1 mK for temperature and 0.01 for salinity) because the sum of the 

coefficients does not equal one. All coefficients should be multiplied by a factor of 0.9997 

(1.0003) for the 21 (11)-point filter to eliminate the biases. Although the filters of Gille et al. 

(2009) can remove the anomalous spikes from the XCTD temperature and conductivity data, the 

XCTD data is still noisy compared to the CTD data averaged over 1-dbar intervals. Using a 

running mean filter with a window of 15 scans (about 2 m) for both of the XCTD temperature 

and conductivity data can effectively remove the noise (Fig. 2). The difference between the 

XCTD and CTD temperature–salinity profiles was 0.0058, 0.0040, and 0.0026 for the raw data, 

data with the anomalous spikes removed, and data subjected to a low-pass filter by using the 

running mean with a window of 15 scans, respectively, for the temperature range between 4.5 

and 12.0 °C.  

 

c. Correction of mismatch in response times 

Time constants of the XCTD temperature and conductivity sensors were reported to be the 

same (0.1 s or less) (Mizuno and Watanabe 1998). However, temperature–salinity profiles 

measured by the XCTD often show a loop shape in the main thermocline of the Kuroshio due to 

a mismatch in the response times of the sensors. This mismatch was examined by using the 

XCTD data obtained from the nearshore side of the Kuroshio axis during cruise KH-02-3 (Fig. 

1). Since the conductivity sensor is sensitive to changes in temperature, conductivity and 
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temperature data are related. In a region with a strong vertical temperature gradient (0.2 °C m–1), 

however, the conductivity data changes one to two scans prior to the temperature data due to a 

faster response time of the conductivity sensor (Fig. 3). This slight mismatch in the response 

times causes a large artificial fluctuation in the calculated salinity data (about 0.05) that is not 

seen in the CTD salinity data (Fig. 4). The mismatch can be effectively compensated for by 

advancing the conductivity data in time relative to the temperature data. For this example, the 

correlation coefficient was higher than 0.9994 after advancing the conductivity data by from 

1.25 to 1.5 scans. The advance of about 1.5 scans simply resulted in less artificial fluctuation in 

the calculated salinity data (Fig. 4). The corrected conductivity data (C') at a scan number i can 

be calculated from the following equation: 
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C'i = 0.5 (Ci–1 + Ci–2),      (2) 

where C is the original conductivity data.  

Using the example of the nearshore side of the Kuroshio axis, the salinity error caused by 

the mismatch in response times is obvious from the XCTD data by examining the density 

inversions (loop shapes of the temperature–salinity profile). For the subarctic North Pacific, 

however, the salinity error is found in the seasonal thermocline without density inversions (Fig. 

5). In the region of a strong vertical temperature gradient (>0.2 °C m–1) between 20 and 40 m 

depth, the XCTD salinity was systematically lower than the CTD salinity observed at a 

neighboring station. The temperature–salinity profile from the corrected XCTD data, which 

incorporates an advance of 1.5 scans of the conductivity data, shows an almost straight line 

between 20 and 60 m depth, similar to the CTD data. The difference in the average salinity from 
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the surface to 100 m depth between the original and corrected XCTD data was –0.015 (Fig. 5). 

Although the magnitude of the error is smaller than the manufacturer’s specification (0.042; 

Table 1), it is one-quarter of the surface-layer salinity change (–0.057) recorded in the subpolar 

North Pacific during recent decades (Hosoda et al. 2009), and this systematic error must be 

removed for climate change research. 

 

d. Salinity calculations 

For the XCTD salinity calculation, pressure was estimated from the XCTD data and 

location (latitude) as follows.  

Pi+1 = Pi + (ρi+1 + ρi) (gi+1 + gi) (Zi+1 – Zi)/4,                        (3) 

where P is pressure, ρ is density, and g is gravitational acceleration. ρ is a function of pressure, 

temperature, and salinity, and g is a function of pressure and latitude (Fofonoff and Millard 

1983). At the sea surface, P0 and Z0 are zero. Temperature and conductivity data for just beneath 

the sea surface were assigned the same values as the shallowest valid data. For the calculation of 

ρi+1 and gi+1, the pressure of Pi was used as an approximation since the error induced by this 

approximation is negligible. XCTD salinity was calculated from the estimated pressure, 

temperature, and conductivity by using the reference conductivity of 42.896 mS cm–1 at a 

salinity of 35, temperature of 15 °C, and pressure of 0 dbar. This reference conductivity value is 

used in the manufacturer’s data processing software.  

The salinity calculation is done in the same manner by the manufacturer’s data processing 

software for the MK-130 system. However, for the MK-100, salinity is calculated by using 
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depth instead of pressure. Because the pressure is about 1% greater than the depth at depths less 

than 1000 m, a depth-dependent systematic error exists in the salinity data from the MK-100 

(e.g., the salinity error at 1000 m depth was about +0.006 at 47°N compared to +0.004 at 16°S). 

Although the magnitude of the error is again much less than the manufacturer’s specification 

(Table 1), it is much greater than the observed salinity change (0.002) in the eastern South 

Pacific Antarctic Intermediate Water between 1992 and 2003 (Schneider et al. 2005), and this 

systematic error must be removed for climate change research. 

 

e. Offset correction of salinity data 

For the deep ocean, changes in salinity in time and space may often be much smaller than 

the XCTD salinity error, and the XCTD salinity offset correction is effective in such cases. If 

temperature–salinity relationships are known, or appropriate CTD data are available for the 

observed region, the XCTD salinity data can be corrected with sufficient accuracy (Itoh and 

Shimada 2003; Uchida and Imawaki 2008). For the XCTD salinity data used in this study, 

salinity offset errors were estimated from deep-water temperature–salinity relationships obtained 

from the CTD data (Table 3). The bias-corrected XCTD data should be used for climate change 

research.  

 

4. Evaluation of the depth error 

Depth determination may be the most likely source of error in XCTD data. To evaluate the 

depth error in the XCTD data, a temperature-error-free method should be used, as documented 
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in previous studies (Hanawa et al. 1995; Kizu et al. 2008). To remove the bias-like temperature 

error, the large vertical scale temperature structure, and the small vertical scale noise, the 

individual temperature profiles of XCTD and CTD pairs were band-pass filtered by subtracting 

temperature profiles low-pass filtered by the running mean filter with a window of 81 m from 

those with a window of 31 m (Fig. 6). The obtained high-wave number temperature profiles of 

the XCTD and CTD pairs have a similar pattern, although differences in depth (e.g., about 20 m 

at 1600 m depth) are evident in the profiles from cruise MR09-01.  

We assumed that the XCTD depth error is constant over a range of ±100 m depth, and we 

estimated the XCTD depth bias that maximized the correlation coefficient between the CTD and 

XCTD temperature within a specified depth range (±100 m), at 100-m intervals. The estimated 

depth biases were averaged for each depth, cruise, and probe type (Fig. 7). Although the results 

for cruises KH-02-3 and MR09-01 are within the manufacturer’s specifications, the XCTD 

depths for cruise MR09-01 were significantly underestimated for both XCTD-1 and XCTD-2 

(Fig. 7b). If the error is caused by a discrepancy between coefficient a in the fall-rate equation 

and true terminal velocity, the error of coefficient a can be estimated from the regression line. 

The estimated error of the terminal velocity was –0.0428 m s–1 for cruise MR09-01.  

 

5. Discussion 

Grounding depths of the XCTD were compared with bottom depths measured by the ship’s 

multi narrow-beam echo sounder during cruise MR09-01 (Murata et al. 2009). The echo 

sounding data were corrected by using sound velocity profiles calculated from the CTD data, 
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and the data were gridded with a resolution of 0.00125° (about 133 m) for both longitude and 

latitude and then interpolated for the location where the XCTD was deployed (Fig. 8). 

Differences between the grounding depth of the XCTD and the echo sounding depth were 

similar to the differences between the grounding depth of the XCTD and the bottom depth 

estimated from the maximum depth of the CTD plus the height above the bottom as measured 

by the altimeter attached to the CTD package. These differences were consistent with the depth 

error of the XCTD estimated from the regression line in Fig. 7.  

Nonuniformity in weight of the XCTD probes may change the terminal velocity of the 

probe. Assuming that the terminal velocity error is caused by a weight discrepancy between the 

actual weight of the probe and the weight specified by the manufacturer, the weight discrepancy 

is calculated to be about 8–9 g less than the normal probe in sea water by using a bulk dynamic 

model for a vertically falling probe (Green 1984). However, all of the XCTD probes were 

weighed in air by the manufacturer before they were shipped (Tsurumi-Seiki, personal 

communication 2009) and were listed as 1068 ± 1 g for the XCTD-1 and 1076 ± 1 g for the 

XCTD-2. Moreover, the XCTD-1 probes produced in 2003 and the XCTD-2 probes produced 

in 2008 showed a similar depth error, suggesting that the depth error is not caused by 

nonuniformity of the products.  

Differences in the ambient water temperature may change the terminal velocity by 

changing the viscous drag. Temperature-dependent coefficients for the XCTD have been 

proposed by Kizu et al. (2008). However, the difference between the original depth data for the 

XCTD obtained during cruise MR09-01 and the depth calculated by using 
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temperature-dependent coefficients of the fall-rate equation proposed by Kizu et al. (2008) is 

less than 4 m. Moreover, ambient temperature profiles for cruise MR09-01 and KH-02-3 are 

similar. Therefore, the depth error cannot be explained by differences in the ambient 

temperature. 

The terminal velocity for the XCTDs deployed during cruise MR09-01 must be less than 

that during cruise KH-02-3 because gravitational acceleration is less in lower latitudes. However, 

the difference (–0.0015 m s–1) in the terminal velocity caused by the difference in gravitational 

acceleration is much less than the terminal velocity error (–0.0428 m s–1) estimated in Section 4.  

Although the systematic depth error is less than the manufacturer’s specification, it must be 

taken into consideration for climate change research; the magnitude of the steric height error 

(about –1 cm) caused by the depth error of the XCTD is comparable to the magnitude of the 

steric height rise (2.8 ± 0.9 cm per decade) south of Japan (Uchida and Imawaki 2008). 

However, more work is needed to clarify the cause of the systematic depth error of the XCTD 

for cruise MR09-01. In future studies we must keep in mind that XBT/XCTD observations may 

have similar depth errors and that simultaneous CTD observations are needed to evaluate these 

errors.  
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Figure captions 

Figure 1. Locations of XCTD casts in the Kuroshio south of Japan (KH-02-3), the subarctic 

North Pacific (MR07-04), and the subtropical South Pacific (MR09-01). Dots and circles 

indicate locations of XCTD-1 and XCTD-2, respectively. The manufacture year of the XCTD 

probes is shown in parentheses.  

 

Figure 2. Comparison of temperature–salinity profiles from (a) XCTD raw data, (b) XCTD data 

with anomalous spikes at frequencies of 5 and 10 Hz removed, (c) XCTD data low-pass filtered 

by the running mean with a window of 15 scans (about 2 m), and (d) CTD data averaged over 1 

dbar. The profiles are shown with salinity offsets to prevent overlap.  

 

Figure 3. High-pass-filtered XCTD temperature (solid line) and conductivity (dotted line) 

profiles. The profiles were high-pass filtered by subtracting profiles low-pass filtered by the 

running mean with a window of 10 m (75 data points) from the original profiles. To remove 

noise, the original profiles were low-pass filtered first by the running mean with a window of 2 

m (15 data points). Data were obtained from just north of the Kuroshio axis.  

 

Figure 4. Comparison of temperature (solid lines) and salinity (dotted lines) profiles from CTD 

and XCTD data obtained at the same station as that for Fig. 3. Mismatch of the response time of 

the XCTD temperature and conductivity data was compensated for by delaying the 25 Hz 

XCTD conductivity data relative to the temperature by 1, 1.5, and 2 scans. The profiles are 
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shown with horizontal offsets to prevent overlap. The XCTD salinity profile calculated by using 

the conductivity data aligned by 1.5 scans agrees well with the CTD salinity profile. 

 

Figure 5. Comparison of temperature–salinity profiles of CTD (thin line) and XCTD (dotted 

line) data obtained in the subarctic North Pacific. The XCTD profile corrected for the mismatch 

of the response time is also shown (thick line). Dots indicate the data at 20, 40, 60, and 100 m 

depths. Contour lines indicate the potential density anomaly (kg m–3).  

 

Figure 6. Comparisons of band-pass-filtered temperature profiles between CTD (solid lines) and 

XCTD (dotted lines) for (a) KH-02-3 and (b) MR09-01. The profiles were band-pass filtered by 

subtracting profiles low-pass filtered by the running mean with a window of 81 m from the 

profiles low-pass filtered by the running mean with a window of 31 m.  

 

Figure 7. Differences between the XCTD and CTD depths for (a) KH-02-3 and (b) MR09-01. 

Filled and open circles are for XCTD-1 and XCTD-2, respectively. The differences were 

estimated from the comparisons of the band-pass-filtered temperature profiles (see text for 

detail). The horizontal bars indicate standard deviation of the estimates. The dotted lines indicate 

the manufacturer’s specification for the XCTD depth error. The dashed line in (b) is the 

regression line for the XCTD-2 data.  

 

Figure 8. Differences between bottom depth estimated from XCTD data and that measured by 
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the ship’s multi narrow-beam echo sounder (MNBES) for cruise MR09-01 (the open triangle for 

XCTD-1 and the open circles for XCTD-2). Differences between the XCTD bottom depth and 

bottom depth estimated from the CTD with altimeter data are also shown (the filled triangle for 

XCTD-1 and the filled circles for XCTD-2). The dashed line indicates the XCTD depth error 

estimated from the regression line in Fig. 7. 
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Table 1. Manufacturer’s specifications for the XCTD-1 and XCTD-2. Accuracy of the 

calculated salinity was estimated from the root-sum-square of 0.021 from the temperature error, 

0.035 from the conductivity error, and 0.010 from the pressure error at a depth of 1000 m, a 

temperature of 4 °C, and conductivity of 32.5 mS cm–1 (calculated salinity of about 34.4).  

=============================================================== 

Parameter Range   Accuracy 

--------------------------------------------------------------------------------------------------------------- 

Temperature –2 to 35 °C  0.02 °C 

Conductivity 0–60 mS cm–1  0.03 mS cm–1 

Depth  0–1000 m (for XCTD-1) 5 m or 2%, whichever is greater 

  0–1850 m (for XCTD-2) 5 m or 2%, whichever is greater 

(Salinity)     0.042 

------------------------------------------------------------------------------------------------------------------ 
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Table 2. Manufacturer’s coefficients for the fall-rate equation (equation 1 in text).  

=============================================================== 

Model     a     b    Source 

 (Terminal velocity, m s–1)  (Acceleration, m s–2) 

--------------------------------------------------------------------------------------------------------------- 

XCTD-1  3.42543   0.00047    Mizuno and Watanabe (1998) 

XCTD-2  3.43898   0.00031    Koso et al. (2005) 

------------------------------------------------------------------------------------------------------------------ 
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Table 3. XCTD salinity bias estimated from deep-water temperature–salinity relationships. The 

depth error for the XCTD data from cruise MR09-01 was corrected (see Section 4 for more 

detail), and the salinity biases were then estimated. 

=============================================================== 

Cruise  Number of profiles Average  Standard deviation 

--------------------------------------------------------------------------------------------------------------- 

KH-02-3  16    0.004  0.018 

MR07-04 16   –0.018  0.009 

MR09-01 29   –0.019  0.011 

Total  61   –0.013  0.016 

------------------------------------------------------------------------------------------------------------------ 
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Figure 1. Locations of XCTD casts in the Kuroshio south of Japan (KH-02-3), the subarctic 

North Pacific (MR07-04), and the subtropical South Pacific (MR09-01). Dots and circles 

indicate locations of XCTD-1 and XCTD-2, respectively. The manufacture year of the XCTD 

probes is shown in parentheses.
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Figure 2. Comparison of temperature–salinity profiles from (a) XCTD raw data, (b) XCTD data 

with anomalous spikes at frequencies of 5 and 10 Hz removed, (c) XCTD data low-pass filtered 

by the running mean with a window of 15 scans (about 2 m), and (d) CTD data averaged over 1 

dbar. The profiles are shown with salinity offsets to prevent overlap. 
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Figure 3. High-pass-filtered XCTD temperature (solid line) and conductivity (dotted line) 

profiles. The profiles were high-pass filtered by subtracting profiles low-pass filtered by the 

running mean with a window of 10 m (75 data points) from the original profiles. To remove 

noise, the original profiles were low-pass filtered first by the running mean with a window of 2 

m (15 data points). Data were obtained from just north of the Kuroshio axis.  
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Figure 4. Comparison of temperature (solid lines) and salinity (dotted lines) profiles from CTD 

and XCTD data obtained at the same station as that for Fig. 3. Mismatch of the response time of 

the XCTD temperature and conductivity data was compensated for by delaying the 25 Hz 

XCTD conductivity data relative to the temperature by 1, 1.5, and 2 scans. The profiles are 

shown with horizontal offsets to prevent overlap. The XCTD salinity profile calculated by using 

the conductivity data aligned by 1.5 scans agrees well with the CTD salinity profile. 
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Figure 5. Comparison of temperature–salinity profiles of CTD (thin line) and XCTD (dotted 

line) data obtained in the subarctic North Pacific. The XCTD profile corrected for the mismatch 

of the response time is also shown (thick line). Dots indicate the data at 20, 40, 60, and 100 m 

depths. Contour lines indicate the potential density anomaly (kg m–3).  
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Figure 6. Comparisons of band-pass-filtered temperature profiles between CTD (solid lines) and 

XCTD (dotted lines) for (a) KH-02-3 and (b) MR09-01. The profiles were band-pass filtered by 

subtracting profiles low-pass filtered by the running mean with a window of 81 m from the 

profiles low-pass filtered by the running mean with a window of 31 m.  
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Figure 7. Differences between the XCTD and CTD depths for (a) KH-02-3 and (b) MR09-01. 

Filled and open circles are for XCTD-1 and XCTD-2, respectively. The differences were 

estimated from the comparisons of the band-pass-filtered temperature profiles (see text for 

detail). The horizontal bars indicate standard deviation of the estimates. The dotted lines indicate 

the manufacturer’s specification for the XCTD depth error. The dashed line in (b) is the 

regression line for the XCTD-2 data. 
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Figure 8. Differences between bottom depth estimated from XCTD data and that measured by 

the ship’s multi narrow-beam echo sounder (MNBES) for cruise MR09-01 (the open triangle for 

XCTD-1 and the open circles for XCTD-2). Differences between the XCTD bottom depth and 

bottom depth estimated from the CTD with altimeter data are also shown (the filled triangle for 

XCTD-1 and the filled circles for XCTD-2). The dashed line indicates the XCTD depth error 

estimated from the regression line in Fig. 7.  


