

レンズ風車のウエイク特性について

九州大学・応用力学研究所・再生可能流体エネルギー研究センター 内田 孝紀

1. はじめに

我々の研究室では、風力エネルギー、太陽光エネ ルギーなどの有効利用に関する研究を行っている.風 力研究の一つの大きな特色は、風エネルギーを集中 させて発電効率を飛躍的に高めた新しいタイプの風力 発電システムの開発(レンズ風車と名付けた)とそのク ラスタ化(マルチレンズ風車)である¹⁾.現在では、実用 化のフェーズに移行している(https://riamwind.co.jp/). 本報では、レンズ風車のウエイク特性について数値シ ミュレーションの結果を中心に紹介する.

2. 研究方法

レンズ風車(図1を参照)に関する研究では、これまで 理論、風洞実験、数値シミュレーション、野外実証試験 と幅広くかつ総合的に実施してきた.ここでは、紙面の 都合上、数値シミュレーションの結果(流れ場の可視 化)を中心にレンズ風車のウエイク特性を紹介する.

図1 70kWレンズ風車,九大伊都キャンパス

一般的に,風車の運転に伴い,その下流領域には 速度の欠損と,その時間・空間変動(乱流強度の増加) が形成される(図2を参照).これらの流動現象は風車ウ エイクと呼ばれる.複数の大型風車群から構成される 洋上の大規模ウィンドファームにおいては,風車ウエイ クが下流側に位置する風車の発電量低下や,風車内 外の故障などを引き起こす可能性がある.よって,上 流側に位置する風車群が形成する風車ウエイクの影 響を正しく評価し,風車間の離隔距離を適切に決定す ることが不可欠である.これは小型風車の場合においても同様である.

図2 風車ウエイク内の気流構造の模式図(内田作成)

本研究における数値計算手法について説明する. デ カルト座標系の不等間隔スタガード格子に基づき,数 値計算手法には差分法を用いる.速度場と圧力場のカ ップリングアルゴリズムには、Eulerの1次陽解法を基礎と した部分段階法を採用する. 圧力に関するPoisson方程 式については, SOR法(Successive Over Relaxation method)により緩和計算する.空間項の離散化に関して、 対流項には補間法による4次精度中心差分に4階微分 の数値粘性項を付加した3次精度風上差分を用いる.こ こで、数値粘性項の重みは0.5とし、その影響は十分に 小さくした.一般に使用される3次精度風上差分の Kawamura-Kuwaharaスキーム では3.0である. 残りの全 ての空間項には2次精度中心差分を適用した.本研究 では,計算安定性に優れ,かつ壁面減衰関数を必要と しない混合時間スケールSGSモデルを採用した. SGS モデルにおける3方向の陽的フィルタ操作には、 Simpson則を適用した.

本研究では、MEL翼を対象にアクチュエータラインモ デルを用いたラージェディシミュレーションを実施した. アクチュエータラインモデルでは、風車ブレードが回転 することで発生する接線力とスラスト力を、流体が受ける 主流方向(x)および回転方向(θ)の反力として、Navier-Stokes方程式に外力項として付加する.本研究では、 デカルト座標系を採用しているので、 θ 成分の力は、主 流直交方向(y)および鉛直方向(z)に分解して与えた.こ のモデル化の最大の利点は、風車が存在することによ

る単なる抵抗体としての速度の減速効果だけではなく, 風車ブレードの回転に起因した旋回効果を考慮できる 点にある.また,任意の半径位置(翼根からの距離)にお ける翼弦長, 揚力係数, 抗力係数, 迎角のデータさえ 入力すれば、種々の種類の風車背後に形成されるウエ イクを再現できる.本研究では,最適周速比4.0を計算 対象とした(図3を参照,横軸は周速比,縦軸はパワー 係数). 本研究ではハブ, ナセル, 集風体を全て含んだ 風車全体解析を行うため,風車周辺には十分な格子解 像度を確保した. 速度の境界条件に関して, 流入境界 面には一様流入速度を与え,側方境界面と上部および 下部境界面には滑り条件, 流出境界面には対流型流 出条件を与えた.風車のハブ,ナセル,集風体は矩形 格子近似法で再現し、そこに含まれる格子点に流速ゼ ロの条件を与えた.ブレード直径に基づいたレイノルズ 数は104とした.

3. 計算結果

図4には、Near wake regionにおける風車ウエイク

図4 Near wake regionにおける風車ウエイク,瞬間場,左:通常風車,右:レンズ風車

(a)円盤

(b)通常風車

(c)レンズ風車 図5 Far wake regionにおける風車ウエイク,主流方向速度成分の可視化,瞬間場

の可視化結果(主流方向速度成分の空間分布,瞬間 場)を示す.図4の左側に示す通常風車の結果では, 翼先端渦の周期的な形成が明確に再現されている. 図4の右側に示すレンズ風車の結果では,翼先端渦と ともに集風体の「つば」からの渦生成が観察される.

図5には、Far wake regionにおける風車ウエイクの可 視化結果(主流方向速度成分の空間分布,瞬間場)を 示す.比較のため、円盤の結果も合わせて示している. 図5(a)に示す円盤の場合には、円盤背後に逆流領域 が形成され、ここから大規模渦が周期的に放出されて いる.その結果として、ウエイクは大きく蛇行している. 図5(b)に示す通常風車の場合には、ブレード直径の 約5~6倍下流から翼先端渦の不安定と崩壊が生じて いる. 図5(c)に示すレンズ風車の場合には, 図5(a)に 示す円盤ほどではないものの, 風車のすぐ背後からウ エイクの蛇行が発生していることが示された.

図6には、図5に対応した時間平均場(無次元時間 t=100-200)を示す.図7には図6から抽出した5D位置 (Dはブレード直径)における平均風速分布を示す.円 盤の場合には、通常風車およびレンズ風車に比べて 速度欠損の回復が著しく早い.通常風車の場合には、 翼先端渦の発生に伴う(翼先端付近での)大きな速度 シアーとナセル背後の逆流域の形成が特徴的である. レンズ風車の場合には、速度欠損量が最も大きくなる 結果となった.しかしながら、通常風車で観察された大 きな速度シアーは形成されないことも明らかになった.

(a)円盤

(b)通常風車

(c)レンズ風車 図6 Far wake regionにおける風車ウエイク,主流方向速度成分の可視化,時間平均場

風車の下流5D位置, Dはブレード直径を意味する

4. おわりに

本報では、レンズ風車のウエイク特性について数値 シミュレーションの結果(スパコンを用いた大規模LES の結果)を中心に紹介した.風車ウエイク特性に与える 風向変化や流入風の乱流強度の影響を検討した計算 結果については、別の機会に報告したい.

参考文献

 Ohya, Y., Karasudani, T. A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology. Energies, 3, 634-649, 2010.