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Abstract

Stably stratified flows over a two-dimensional hill in a channel of finite depth are investigated numerically at a Reynolds
number of 2000, which is based on the uniform upstream velocity U and the hill height . As a first step, we assume a
free-slip condition on the ground, both upstream and downstream of the hill, and impose a no-slip condition only on the hill
surface. Such a configuration corresponds to that of the previous towing tank experiments and numerical studies. For strong
stratification (1 < K =NH/nU < 2), the present numerical results confirmed that the flow around the hill is intrinsically
unsteady, which is manifested very clearly as periodic oscillations in the drag coefficient Cy on the hill, and emphasize
the following features, where N is the buoyancy frequency and H is the channel depth. For 1.1 < K < 1.7, columnar
disturbances with mode n=1 are dominant so that the flow around the hill shows a persistent periodic unsteadiness.
This flow unsteadiness is mainly due to the periodic shedding of upstream advancing columnar disturbances with mode
n=1 with a clockwise circulation. For 1.8 < K < 2, as columnar disturbances with mode n=2 become dominant, the
flow around the hill rapidly reaches an almost steady state. In addition, through the calculations with the blockage ratio
H/h=6,10 and corresponding Re =20, 100 and 2000, it is found that the normalized periods of Cy oscillations have a
strong dependence on both the H/h and Re. As a next step, to investigate the flow around the hill under real atmospheric
situations, we have performed calculations under imposition of a no-slip condition on the ground, particularly focusing
on the effect of stable stratifications on the unsteady separated—reattached flow behind the hill. The flow around the hill
exhibits different behavior over the whole range 0 < K < 2, corresponding to the difference in the boundary condition
on the ground. For 0 < K < 0.9, the vortex shedding from the separation bubble behind the hill occurs. For K =1 and
1.1, the vortex shedding is strongly suppressed so that the flow around the hill rapidly reaches an almost steady state.
Under strong stratification (1 < K < 2), although lee waves are excited downstream of the hill, the vortex shedding clearly
exists. For 1.2 < K < 1.5, the flow field with a vortex shedding shows an approximately steady state, corresponding to the
stationary lee wave. It is much more likely that there is no significant change in the approaching flow just ahead of the
hill, because the change in the columnar disturbances with mode n=1 is very small. Only when 1.6 < K < 2 does the
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flow around the hill become unsteady. However, the rate of the periodic change in the separation bubble is very small.
These flow mechanisms for 1.6 < K < 2 are almost the same as those discussed in the prior numerical results. (© 2001
Published by The Japan Society of Fluid Mechanics and Elsevier Science B.V. All rights reserved.
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1. Introduction

Stably stratified flows over topography have attracted great interest from not only fluid mechani-
cians but also engineers in a variety of fields. For example, investigations of pollutant transport
and dispersion in stably stratified flows over complex terrain are critical for the protection of air
quality, because industrial plants and other sources of air pollution frequently locate within or near
complex terrain. The stable stratification effect strongly influences plume behaviors over complex
terrain. Depending on the release height and stratified conditions, plumes may be observed to be
entrained into rotors or vortices of numerous types, or to be transported long distances with little or
no dispersion.

We consider two-dimensional internal waves excited topographically in stably stratified flows in a
channel of finite depth. Under these conditions, the fluid layer is bounded above by a horizontal rigid
lid and below by a two-dimensional surface-mounted obstacle. Therefore, all upward propagating
energy of internal waves is reflected downward, and is trapped in this fluid layer. According to
the linear theory (e.g. Turner, 1973), internal waves in a channel of finite depth have a continuous
spectrum in the horizontal with wave number %, and a discrete spectrum in the vertical with wave
number k, =nn/H. The flow around topography is characterized by the parameter K(=NH/=U),
where N is the buoyancy frequency, A is the channel depth and U is the uniform upstream velocity.
The linear dispersion relation for internal waves with the vertical mode number n is

n’n?
w? <k§ + ?> — N2 =0, (1a)
where w is the angular frequency. The horizontal phase velocity C, (k) of these waves is given by
w N
Cp, () = — (1b)
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and the horizontal group velocity Cy (k) by
Q_cg B N(nn/H)? (10)
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From Egs. (1b) and (1c), Cp (k) and Cg (k) take their maximum values in the limit of k&, — 0

(columnar disturbance), at which they are given by

G (0)=C0)="" (1d)

ng (k)=

This columnar disturbance, which is a manifestation of long internal waves and has an almost
horizontal motion relative to the uniform flow, propagates upstream at the speed of

Cpx(O)—Uzjﬂ—U=<I£—l) U, (1e)
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with respect to topography. From Eq. (1e), for the cases of 0 < K < 1, since the flow is supercritical
to all the wave modes (i.e., Cp, (k) and Cg (k) of the columnar disturbance are less than U), no
upstream columnar motion occurs. In this study we call these ranges of K the weak stratification.
On the other hand, for the cases of 1 < K < 2, the flow becomes subcritical to the mode n=1
(i.e., Gy (k) and Cq (k) are greater than U) so that the wave with mode n=1 begins to propagate
upstream of topography in the form of a columnar disturbance at the speed of (K — 1)U. We call
these ranges of K the strong stratification. It should be noted here that K(= NH/nU) is physically
interpreted as the ratio of the maximum horizontal phase or group velocity (NH/x) of the columnar
disturbance with mode n=1 to the uniform upstream velocity U (see Eq. (1d)).

Stably stratified flows over two-dimensional topography in a channel of finite depth have been
the subject of extensive study since the pioneering work of Long (1953, 1955). For this special but
important class of flows, there have been many theoretical (e.g. Mclntyre, 1972; Janowitz, 1981),
experimental (e.g. Castro et al., 1990; Baines, 1995) and numerical (e.g. Castro, 1989; Hanazaki,
1989a, b; Paisley and Castro, 1994a; Lamb, 1994; Rottman et al., 1996) findings. The most strik-
ing feature of these findings has been the unsteadiness in the flow around topography for strong
stratification (1 < K < 2). Castro et al. (1990) found in their towing tank experiments that an obsta-
cle drag in linearly stratified flows shows a persistent periodic oscillation for 1.4 < K < 2. Similar
phenomena have been confirmed in a number of numerical simulations under the same conditions
(Hanazaki, 1989a, b; Paisley and Castro, 1994a; Lamb, 1994; Rottman et al., 1996). To date, these
numerical simulations have been of two types: viscous laminar flow simulations with low Reynolds
numbers of less than 100 (Castro, 1989; Hanazaki, 1989a, b; Paisley and Castro, 1994a) and in-
viscid flow simulations (Lamb, 1994; Rottman et al., 1996). However, there have been a limited
number of numerical studies with high Reynolds numbers (Paisley et al., 1994b; Uchida and Ohya,
1997). The possible mechanism of this periodic flow unsteadiness has been discussed (Castro et al.,
1990; Hanazaki, 1989a, b; Paisley and Castro, 1994a; Rottman et al., 1996). Castro et al. (1990)
discussed that variations in the Cy are a consequence of those in the effective value of K upstream of
the obstacle, which are associated with changes in the strength of columnar disturbances. Hanazaki
(1989a, b) asserted that time-dependent oscillations in the strength of columnar disturbances (eddies)
detaching upstream from the obstacle lead to those in the Cy. He also suggested that the strength
of each columnar mode approaches a certain constant value that depends on K and is not zero
as time proceeds. Paisley and Castro (1994a) offered an explanation for these Cy oscillations with
the assumption that the role of the body in tuning the flow was an important factor. Namely, it is
much more likely that unsteady behavior in the Cy is a result of non-linear processes. Based on
the assumption that the periodic flow unsteadiness around topography is mainly due to the internal
wave that remains oscillating in the neighborhood of topography for the longest time, Rottman et al.
(1996) derived the period 7, of this most persistent wave as a function of K from the linear theory
(e.g. Turner, 1973). It is then given by

2 | (KN
T,== !(-) 1
n n

Such waves should have a group velocity equal in magnitude but opposite in direction to the ap-
proaching flow speed, and propagate upstream of topography at the speed of {(K/n)*? —1}U. They
suggested that the agreement between predictions by Eq. (1f) and measured periods of the Cjy
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oscillations from their numerical results and the previous experimental (Castro et al., 1990) and
numerical (Paisley and Castro, 1994a; Lamb, 1994) studies is quite good, in spite of the fact that
in a stratified viscous fluid, there is a boundary layer separation in the lee of topography. However,
a complete account of the flow unsteadiness around the hill under high Reynolds numbers is not
given. Furthermore, the effect of a variety of factors, such as the blockage ratio (H/h), the Reynolds
number and the boundary condition on the ground, on the flow around the hill still remains unclear.

In the present numerical studies, we describe the results of linearly stratified flows over a two-
dimensional hill at a relatively high Reynolds number of 2000. A direct numerical simulation (DNS),
which involves the numerical solution of the Navier—Stokes equation without any turbulent model, is
performed by using a finite-difference method (FDM). In particular, we assume a free-slip condition
on the ground, both upstream and downstream of the hill, and impose a no-slip condition only on the
hill surface. Such a configuration corresponds to that of the aforementioned towing tank experiments
(Castro et al., 1990; Baines, 1995) and numerical studies (Castro, 1989; Hanazaki, 1989a, b; Paisley
and Castro, 1994a, Paisley et al., 1994b). Particular emphasis is placed on the mechanisms of the
flow unsteadiness around the hill for strong stratification (1 < K < 2) at a relatively high Reynolds
number of 2000. The effects of a variety of factors, such as the blockage ratio (H/h) and the
Reynolds number, on the flow around the hill are also discussed. As a next step, to investigate
the flow around the hill under real atmospheric situations, we perform calculations with a no-slip
condition on the ground, particularly focusing on the effect of stable stratifications on the unsteady
separated-reattached flow behind the hill.

2. Computational details
2.1. Governing equations

We consider a linearly stratified flow of incompressible and non-diffusive fluid past a two-
dimensional hill in a channel of finite depth. Fig. 1 shows the schematic view of the flow con-
figuration employed. Tt consists of a streamwise length L =400/ and a vertical depth H = 64, where
h is the hill height. In order to simulate a bounded fluid, an absorbing region (with enhanced fric-
tion) is usually installed near the inflow boundary to eliminate the influence of upstream propagating
perturbations from the hill. In this study, the inflow boundary is sufficiently long (3204 in all the
calculations) that the flow in the neighborhood of the hill is fully developed without an absorbing

U A* H=6h
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Fig. 1. Schematic view of the flow configuration.
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region. For the geometry of the hill, a simple cosine function is chosen with a profile given by
h(x)=0.5 x {1 + cos(nx/a)}, (2a)

where the hill geometry parameter a is set at 1. Under the Boussinesq approximation, the dimensional
governing equations for unknown variables w; = (u,w), p’ and p’ consist of the continuity, Navier—
Stokes and density equations. The equations are written in the gradient form as follows:

6ul~

_ 2
o 0, (2b)
Ou; 0w 10p"  w Pu p'gds
) i Ll — 2
ot U Ox; 0o Ox; + po 0x;0x; oo (20)
ap"  op dps
o e T Ve (2d)

p' and p’ are the perturbation density and pressure defined as

p'=p—ps, P'=p—ps
where x; = (x,z) are the physical coordinate components, u; = (u, w) are the corresponding physical
velocity components, pg is the reference density, u is the viscosity coefficient and g is the acceleration
due to gravity. The variables of pg and pp, which satisfy the hydrostatic equilibrium d pg/dz =—pgg,
are the undisturbed basic distributions at the inflow boundary, and pg decreases linearly with height,
namely, dpg/dz =—1. The subscripts i, j take values of 1, 3 to denote the streamwise (x) and vertical

(z) directions, respectively. Non-dimensionalizing all variables using the uniform upstream velocity
U, hill height 4 and reference density p;, we have the following three dimensionless equations:

auy
ax,»
Ou; ou; op 1 *u; _ poi3

=0, (3a)

ot + ujgj - Ox; + Re Ox;0x;  Fr?’ (3b)
op op

These governing equations include two dimensionless parameters, i.e., the Reynolds number
Re(= poUh/u) and the Froude number Fr(= U/Nh), where N is the buoyancy frequency defined
as N> =—(g/po)(dpg/dz). It should be noted here that for the stratified flow of finite depth not only
Re and Fr but also K(=NH/nU), which contains the channel depth H, is a parameter necessary
to determine the character of internal waves. Since K is rewritten as K = H/mhFr, it is determined
by H/h when Fr is a known number. In other words, K reflects the effect of boundary conditions
though it does not appear explicitly in the governing equations. We summarize the numerical results
in terms of K, rather than Fr.

2.2. Simulation methods and parameters

In order to simulate the flow around the hill with high accuracy, a generalized curvilinear coor-
dinate system (x =x(&,(), z=2z(&,{)) is employed. Hence, the original governing equations (3a)—(3c)
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Fig. 2. Collocated grid in a generalized curvilinear coordinate system.
in the physical space are transformed to the computational space as follows:
1 [o(JUY)
- — | = 4
2| %52 - (42)
8ul Ou; 08 dp 1 =2 0053
JU/ =——=———+—Vu-—, 4b
T [( a@] ox 08 T Re’ U B (40)
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The Jacobian and the contravariant velocity components are given by
Ox;
J=|=—, 4d
5 (4d)
) J
U= %ui. (4e)
8x,~

The governing equations (4a)—(4c) in the computational space are approximated by a finite-difference
method (FDM) based on a collocated grid. A full description of a numerical method using a col-
located grid can be found in Zang et al. (1994). Here something should be said about a variable
arrangement of a collocated grid. The physical velocity components, pressure and density are defined
at the center of a cell, while the contravariant velocity components multiplied by the Jacobian are
defined at the midpoint on their corresponding cell surfaces, as shown in Fig. 2. The coupling algo-
rithm of physical velocity components and pressure is based on an extension of the fractional step
method (Kim and Moin, 1985) to the incompressible stratified flow. Therefore, the pressure Poisson
equation derived from Eq. (4b) is solved by the successive overrelaxation (hereafter SOR) method.
The iterative solution of the pressure Poisson equation is the most time-consuming part of the overall
solution procedure. In the previous numerical studies (Ohya et al., 1992; Uchida and Ohya, 1997),
we used a regular grid in which all variables were defined at the same location for a computational
grid. Therefore, when the grid resolution was too high to resolve the fine scales, we always experi-
enced an inefficient convergence of the SOR method. The results of the present numerical method
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X a

Fig. 3. Computational grid near a hill.

based on a collocated grid were considerably improved over those of the previous method based
on a regular grid. Accordingly, the former method was much more efficient than the latter in terms
of CPU time. The Euler explicit method with a first-order accuracy is used for time advancement
in Egs. (4b) and (4c). As for the discretization of spatial derivatives in the governing equations,
all spatial derivatives except for the convective terms are approximated by a second-order central
scheme. For the convective terms, a modified third-order upwind scheme is used. For example, a
part of the x-component is expressed as

1 0 1 —. ¢ u;

5 [(JU)a—é] = FUTOY 3 f i+ | Uie =2
The first term of the right-hand side of Eq. (4f) is an appropriate fourth-order central scheme for
a collocated grid (Kajishima et al., 1997). The second term is a fourth-derivative error term, the
so-called artificial numerical viscosity, that can minimize the numerical dissipation of velocities and
density while avoiding the appearance of any numerical oscillations (Kawamura et al., 1986). The
signs of —¢ and ¢ represent an interpolation operator and a finite-difference operator, respectively.
The formulas are defined as

—firzpn +27(fiv10k — fic2.0) + fizspn

—Auiy o+ Ou e — Aui g Uik
4 AE ’

(4f)

[/;é]i’k _ —fir3pn + 9(fi+1/2,l;6+ Si—12.6) — fi—3/2,k’ (4h)

where f is an arbitrary function and A is the grid scale (A =1). The number of grid points is
501 x 101 in the x- and z-directions. The computational grid near the hill is shown in Fig. 3. The
grid points in the physical space are sufficiently concentrated toward the hill surface and ground. The
vertical smallest grid spacing at the hilltop is 3 x 1073A. To examine the accuracy of the numerical
results, a grid refinement study was also conducted. A very fine grid, which has 1001 x201 grid points
in the x- and z-directions, was used. Comparisons between the numerical results with 501 x 101 grid
points and those with 1001 x 201 grid points show that changes in the grid resolutions are negligibly
small on the numerical results so that we expect that the present calculations with 501 x 101 grid
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Fig. 4. Boundary conditions.

points are free from the grid dependence. The boundary conditions are shown in Fig. 4. The condition
of 6/0z=0 on the upper boundary and ground except for the hill surface is a free-slip condition.
A no-slip condition is imposed only on the hill surface (x| < a). Such physical conditions closely
match the previous towing tank experiments (Castro et al., 1990; Baines, 1995) and numerical studies
(Castro, 1989; Hanazaki, 1989a, b; Paisley and Castro, 1994a, Paisley et al., 1994b). Impulsive-start,
which represents a suddenly accelerated flow from rest, is employed for an initial condition. We
calculate the flow around the hill at a relatively high Reynolds number of 2000 for a wide range of
K (0 < K <3). A non-dimensional time increment is fixed at Az =(1 or 2) x 107>,

3. Results for free-slip conditions
3.1. Weak stratification (0 < K < 1)

Fig. 5 shows the instantaneous streamlines around a hill for weak stratification (0 <K <1) at
a non-dimensional time #=200. A stationary vortex behind the hill is observed, different from the
real three-dimensional stratified flows over topography. Its size is suppressed as K increases. For
K =0.8 and 1, a stationary lee wave with long wavelength appears downstream of the hill. This lee
wave can be more clearly observed in Fig. 6(c) and (d). The stationary vortex gradually elongates
as time proceeds for all the cases, but we will not discuss this phenomenon (Chernyshenko and
Castro, 1993) in detail because it is beyond the scope of this study. A further investigation of the
developing flow field around the hill reveals that the rate of the gradual elongation in the size of the
stationary vortex for K =1 is significantly smaller than that of the other cases of K =0-0.8. This
is likely due to the existence of the long lee wave for K = 1.

Fig. 6 shows the corresponding perturbation streamlines (Ay), which are depicted by the pertur-
bation velocity components (Au=u — U and Aw=w). These Ay make clear the existence of lee
waves and columnar disturbances propagating upstream of the hill. For K =0 and 0.5, Ay represent
the stationary vortex behind the hill, as shown in Fig. 5(a) and (b). As K approaches 1, the front of
Ay above the hill moves upstream of the hill (see arrows), but the systematic upstream propagation
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T Hill

Fig. 5. Instantaneous streamlines around a hill for weak stratification (0 < K < 1) at a non-dimensional time ¢ =200,
Re=2000: (a) K=0; (b) K=0.5; (¢c) K=08; (d) K=1. Dotted lines indicate counter clockwise circulations in
Fig. 9(b)—(d).

(c)

!
“ =)
T Hill

Fig. 6. Perturbation streamlines (Ay) corresponding to Fig. 5, —4 < Ay < 2: (a) K=0; (b) K=0.5; (c) K=0.8;
() K=1.

of columnar disturbances is not yet observed. For K =0.8 and 1, Ay are seen downstream of the
hill, implying the existence of lee waves.

Fig. 7 shows the time history of drag coefficient Cyq on the hill over a period of integration
0 <t < 500. The behavior in the Cy for all the cases suggests that the flow around the hill reaches
an almost steady state. To be precise, however, these Cy variations do not reach any K-dependent
constant values, reflecting the gradual elongation in the size of the stationary vortex behind the hill,
as pointed out by Hanazaki (1989a).
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Fig. 7. Time history of drag coefficient C4 on a hill for weak stratification (0 < K < 1), Re =2000.

T Hill

Fig. 8. Instantaneous streamlines around a hill for strong stratification (1 <K <2), K=2.5 and 3, Re=2000:
(a) K=13, t=313; (b) K=15, t=314; (c) K=18, t=60; (d) K=2, t=60; (¢) K=25, t=50; (f) K=3, t=50.

3.2. Strong stratification (1 < K <2), K=2.5 and 3

Fig. 8 shows the instantaneous streamlines around a hill for strong stratification (1 < K <2), K =
2.5 and 3. For all the cases, a lee wave is excited downstream of the hill and its wavelength is
gradually shortened as K increases. The upward and downward flows in the lee wave motion induce
eddy regions on both the downstream ground (Fig. 8(a)—(c), (e) and (f)) and upper boundary
(Fig. 8(a) and (b)). In this study we refer to these eddy regions, which are induced by the lee wave
motion, as the rotor. Moreover, a wave breaking is observed for K =2.5 and 3.
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(c)

W\

2nd | 13rd

Fig. 9. Perturbation streamlines (Ay) corresponding to Fig. 8, —1 < Ay < 1: (a) K=13; (b) K=15; (¢) K=138;
(d) K=2; (e) K=25; (f) K=3.

Fig. 9 shows the corresponding perturbation streamlines (Ay/). The most striking feature in Fig. 9
is that closed Ay also appears upstream of the hill, indicating the existence of upstream advancing
columnar disturbances. The wave with mode n=1 begins to propagate upstream in the form of a
columnar disturbance. The detaching of the eddy is seen since the strong and weak parts appear,
in turn, in the upstream advancing columnar disturbances with mode n=1 (Hanazaki, 1989a). For
K=1.3 and 1.5, in which the columnar disturbance with mode n=1 is dominant, the mode n=1
eddy is detached at successively shorter periods as K becomes larger (see also Fig. 11). For K > 1.8,
columnar disturbances with mode n =2 elongate upstream of the hill (Baines, 1979; Hanazaki, 1989a)
and for K > 2.5, those with mode n=23 are seen near the hill. It should be noted that columnar
disturbances with mode n =1, generated as detaching eddies, have only a clockwise circulation for
K =13, while for K > 1.5, they have both clockwise and counterclockwise circulations (see also
Fig. 11). A detaching eddy with a clockwise circulation is generated from the hill, while the one
with a counterclockwise circulation is generated from a rotor attached to the upper boundary near the
hill. Thus, a rotor seems to behave as the origin of columnar disturbances (Baines, 1995). According
to the linear theory (e.g. Turner, 1973), the propagation speed of columnar disturbances is given by
Eq. (1e). The values obtained from the present calculations are consistent with those by Eq. (le)
for all the cases.

Fig. 10 shows the time history of drag coefficient Cy on the hill for strong stratification (1 < K < 2)
over a period of integration 0 < ¢ < 500. There are two interesting features in this figure. First, for
K =1.3 and 1.5, the persistent periodic Cy oscillations, which have an approximately constant ampli-
tude and period, are observed. Especially for K = 1.5, they have a quite large amplitude. Secondly,
for K=1.8 and 2, the Cy oscillations rapidly decay after about 1t =200. The former implies that
the persistent periodic unsteadiness exists in the flow around the hill. The latter shows that the flow
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Fig. 10. Time history of drag coefficient Cyq on a hill for strong stratification (1 < K < 2), Re =2000.

unsteadiness around the hill rapidly decays after about ¢#=200. Paisley and Castro (1994a) also
reported persistent periodic oscillations in the Cyq for 1.3 < K < 1.6 and decaying oscillations in the
Cq for 1.7<K <2.

3.3. Mechanism of the periodic flow unsteadiness around the hill for 1 <K <2

First, we offer the origin of the persistent periodic flow unsteadiness around the hill for strong
stratification (1 < K < 2) as follows. To investigate more clearly the relation between the flow
unsteadiness and the behavior of columnar disturbances (especially for the disturbance with mode
n=1), we calculated the time history of u; and u, at an upstream point of the hill (i.e., x= — 2k)
over a period of integration 0 < ¢ < 500. It is then defined by

U, = ]% /OH <%> cos(n——:[—%> dz. (5)

The results are shown in Fig. 11, together with variations in the Cyq on the hill. These u; and wu,
values make clear the strength of individual upstream advancing columnar modes with n=1 and 2.
Here, u; with a negative value corresponds to a columnar disturbance of mode n =1 with a clockwise
circulation. On the other hand, u; with a positive value corresponds to a columnar disturbance of
mode n=1 with a counterclockwise circulation. At first glance, we notice that variations in the Cy
on the hill are precisely in phase with those in the u; for all the cases. In other words, the periods of
Cq oscillations are certainly consistent with those of the shedding of upstream advancing columnar
disturbances with mode n = 1. Therefore, these results indicate the following in regard to the origin
of the persistent periodic flow unsteadiness around the hill. It may be driven by the periodic shedding
of upstream advancing columnar disturbances, which are generated from the hill, of mode n=1 with
a clockwise circulation, as proposed by Hanazaki (1989a, b). Consequently, this event leads to a
periodic modification in the flow just ahead of the hill, as we describe in the following paragraph.

Next, we concentrate on the reason why variations in the Cyq on the hill take their high and low
values. For this purpose, we examine the flow field around the hill for K = 1.5 in more detail. Fig. 12
shows the instantaneous streamlines at low- and high-Cy states, respectively. There are several large
differences in the flow pattern around the hill between two states. First, we can see lee waves with
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Fig. 11. Time history of drag coefficient Cy on a hill, columnar mode with n=1 (u1) and mode with n=2 (u2) for strong
stratification (1 < K < 2), Re=2000.

Fig. 12. Instantaneous streamlines around a hill for K =1.5, Re=2000: (a) Low-Cqy state, t=314; (b) High-Cy state,
t=339.

a small amplitude over the hill at a low-Cy state in Fig. 12(a), while these waves are of a large
amplitude at a high-Cy state in Fig. 12(b). Secondly, a large stationary vortex behind the hill is
induced by the corresponding upward flow in the lee wave motion over the hill at a low-Cy state,
whereas a small one is induced by the corresponding downward flow at a high-Cy state.

Fig. 13 shows the corresponding perturbation streamlines (Ay) and velocity vectors (Awu and
Aw) in the vicinity of the hill at low- and high-Cy states. First, we note that a columnar disturbance
(eddy) of mode n=1 with a clockwise circulation, indicated by an arrow, is just about to detach
from the hill at a low-Cy state in Fig. 13(a), while this disturbance has just detached from the hill
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Fig. 13. Perturbation streamlines (Ay) and velocity vectors (Au and Aw) corresponding to Fig. 12, —1 < Ay < Lt
(a) Low-Cy state; (b) High-Cy state.

at a high-Cy state in Fig. 13(b). Therefore, an upward flow is induced in front of the hill at a
low-Cy state. On the other hand, a downward flow is induced in front of the hill at a high-Cy state.
Immediately upstream of the hill, these upward and downward flows modify the approaching flow
directly for the hill: the former tends to lift the approaching flow up; the latter tends to press it down.
As a result, the curvature of the separated-reattached shear layer generating from the hill becomes
small at a low-Cy state, while it becomes large at a high-Cy state. Since the base pressure of the hill
is directly influenced by the curvature of the separated-reattached shear layer, Cy variations become
low values due to the small curvature and high values due to the large curvature.

3.4. Mechanism of decaying Cy oscillations for 1.8 < K <2

Let us now examine the mechanism of decaying Cy oscillations for 1.8 < K < 2. Fig. 14 shows
the well-developed perturbation streamlines (Ay) for K =1.8 and 2 at t=350. Fig. 15 shows the
corresponding streamlines. From Fig. 14, it is apparent that both clockwise and counterclockwise
circulations are symmetrically arranged with reference to the horizontal center axis of the channel.
This phenomenon manifests the appearance of columnar disturbances with mode n =2. This wave
contributes no fluctuations to the approaching flow, eventually leading the flow around the hill to be
symmetric with respect to the horizontal center axis of the channel, as shown in Fig. 15. Accordingly,
as time proceeds, namely, as columnar disturbances with mode n =1 disappear and those with mode
n=2 become dominant instead, the flow around the hill rapidly reaches an almost steady state.
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T Hill

Fig. 14. Perturbation streamlines (Ay) around a hill at =350, Re=2000, —1.3 < Ay < 13: (a) K=18; (b) K=2.
Dotted and full lines indicate clockwise and counterclockwise circulations, respectively.

Fig. 15. Instantaneous streamlines corresponding to Fig. 14: (a) K =1.8; (b) K=2.
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Fig. 16. Comparison between the normalized periods (UTi/H) of persistent periodic Cq oscillations obtained from the
present numerical results with Re =2000 and the values predicted by Rottman et al. (1996) (i.e., Eq. (1f)).

3.5. Effect of the blockage ratio and Reynolds number on the periodic flow unsteadiness

There is a significant difference in the normalized periods (UT;/H) of Cy oscillations between
the values predicted by Rottman et al. (1996) (i.e., Eq. (1f)) and those obtained from the present
calculations with Re =2000. The comparison between two results is shown in Fig. 16. A distinct
difference in the normalized periods of Cy oscillations is obviously found, especially for K =1.2. To
further investigate this discrepancy, we examined the effect of the blockage ratio H/h and Reynolds
number Re on the periodic flow unsteadiness around the hill.
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Fig. 17. Time history of drag coefficient Cq4 on a hill and columnar mode with n=1 () for K=1.5:
(a) H/h=06, Re =20, 100 and 2000; (b) H/h= 10, Re=20,100 and 2000. The normalized period (UT)/H) of Cy4 oscil-
lations is about 11.5 (Re=20), 10 (Re=100) and 8.8 (Re=2000) with H/h =6, compared to 11.6 by Eq. (1f). On the
other hand, it is about 11.5 (Re=20), 11.5 (Re=100) and 10 (Re =2000) with H/h=10.

Fig. 17 shows the time history of Cy and u; calculated from Eq. (5) over a period of integration
0 <t <500 for K=1.5, where H/h =6 and Re=20, 100 and 2000 in Fig. 17(a), while H/A =10
and Re =20, 100 and 2000 in Fig. 17(b). From Fig. 17, we can see several striking features as
follows. For all the cases, despite the differences in the H/A and in the Re, the Cy variations are
completely in phase with those in the u;. Therefore, the periodic flow unsteadiness around the hill
may be caused by the similar mechanism suggested in Figs. 12 and 13. For the individual blockage
ratio, as the Reynolds number decreases, the normalized periods of Cy oscillations tend to reach
an almost same value predicted by Eq. (1f). Furthermore, a comparison between Fig. 17(a) and
(b) shows that as the blockage ratio becomes larger, the trend in approaching the predicted value
by Eq. (1f) is remarkable at the same Reynolds number, especially for the case with Re =2000.
This is likely due to the inhibition of the non-linear effect on the periodic flow unsteadiness around
the hill. Therefore, it is reasonable to conclude that in the present numerical results with H/h =6
and Re=2000 the non-linear effect can be strongly enhanced, eventually leading to the differences
between the predicted values by Eq. (1f). In particular, it is shown that the effect of the blockage
ratio is relatively dominant, rather than the Reynolds number in the range 20 < Re < 2000. It should
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Fig. 18. Variations of drag coefficient Cy on a hill with X (0 < K < 3), Re=2000. Full and dotted lines indicate per-
sistent and decaying Cq4 oscillations, respectively. In addition, the flow characteristics around the hill for 0 < K < 2 are
summarized. For K =2.5 and 3, the flow around a hill becomes complicated.

be noted here that variations in the u; with H/A=10 and Re=20 in Fig. 17(b) gradually reach a
K-dependent constant value, as pointed out by Hanazaki (1989a, b).

3.6. Variation in the drag coefficient Cyq on the hill with K (0 < K < 3)

Fig. 18 shows the time-averaged drag coefficient C4 on the hill for 0 < K < 3. The arrows in
the figure indicate the fluctuations from the time-mean values. We can see that Cyq decreases locally
at integral values of K =1, 2 and 3. The overall trend in the behavior of Cy is almost similar to
that obtained from the previous theoretical (Janowitz, 1981) and numerical (Castro, 1989; Hanazaki,
1989a, b; Paisley and Castro, 1994a) studies. Also in Fig. 18, flow characteristics around the hill
for 0 <K <2 are summarized. The flow patterns can be classified into two regimes: the weak
stratification (0 < K < 1), in which the flow around the hill approaches an almost steady state as
time proceeds, mainly due to the generation of lee waves (especially for K=1) and the strong
stratification (1 < K < 2), in which the flow unsteadiness caused by the columnar disturbance is
observed. Furthermore, the strong stratification (1 < K < 2) can be classified into two regimes. For
1.1 £ K < 1.7, columnar disturbances with mode n=1 are dominant so that the flow around the
hill shows a persistent periodic unsteadiness. For 1.8 < K < 2, as columnar disturbances with mode
n=1 disappear and those with mode n =2 become dominant instead, the flow around the hill rapidly
reaches an almost steady state.

4. Results for no-slip conditions

As a next step, in order to investigate the flow around the hill under real atmospheric situations,
we attempt calculations under imposition of a no-slip condition on the ground. Under these physical
conditions, generally speaking, the flow over topography becomes sufficiently complicated owing to
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Fig. 19. Time sequence of streamlines covering one cycle of vortex shedding for K =0, Re=2000: (a) ¢=148;
(b) t=152; (c) t=155; (d) t=157.

the unsteady separated-reattached flow behind topography. In previous studies, we have attempted
to clarify the effect of stable stratifications on the unsteady separated-reattached flow behind the
surface-mounted obstacle at relatively high Reynolds numbers (Re =2000-7500) both experimentally
and numerically (Ohya et al., 1992). However, the detailed flow features and mechanisms still remain
unclear. To avoid a troublesome boundary layer effect, we employ a free-slip condition on the ground
upstream of the hill, much as in our previous numerical study (Ohya et al., 1992). A no-slip condition
is imposed on the hill surface (Jx| < @) and the downstream of the hill.

4.1. Vortex shedding from the separation bubble generated behind the hill (K =0)

Fig. 19 shows a time sequence of streamlines covering one cycle of vortex shedding for K =0.
The shear layer separating from the hill surface reattaches to the ground downstream of the hill
and forms a separation bubble behind the hill (Fig. 19(a)). This separation bubble has a clockwise
circulation. As time proceeds, the separation bubble gradually elongates in the streamwise direction.
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Fig. 20. Instantaneous streamlines around a hill for 0 < K < 1.3, Re=2000: (a) K=0, +=148; (b) K=0.5, =200,
(¢) K=038, t=151; (d) K=1, t=200; (e) K=1.3, t=200.

Coincidentally, a secondary eddy with a counterclockwise circulation (see the arrow) is induced in
the separation bubble (Fig. 19(b)). As the secondary eddy moves along the ground, a new separated
shear layer from the hilltop begins to reattach to the downwind surface of the hill again (Fig. 19(¢c)).
As a result, a first vortex (a separation bubble) is shed downstream of the hill (Fig. 19(d)).

4.2. Flow characteristics with K (0 < K < 3)

Fig. 20 shows the instantaneous streamlines around a hill for 0 < K < 1.3. All of them, except
for the case of K =1, indicate approximately the same phase of vortex shedding. For K =0.5 and
0.8, the stratification effect on the flow field cannot be seen near the downstream in the wake.
Similar to the case of K =0, the vortex shedding from the separation bubble occurs. For K =1, the
flow around the hill is markedly different from that observed in the cases of K =0-0.8. That is, a
stationary lee wave with long wavelength appears downstream of the hill so that the vortex shedding
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Fig. 21. Time history of drag coefficient Cy4 on a hill for weak stratification (0 < K < 1), Re =2000.

is strongly suppressed. For K =1.3, there are several significant differences in the flow around the
hill, as distinct from the prior numerical result in Fig. 8(a). First, a stationary lee wave is excited,
similar to our previous wind-tunnel experiment (Ohya et al., 1992). Secondly, an upward flow in
the lee wave motion induces a rotor on the ground downstream of the hill. However, its size is
remarkably smaller than that observed in the prior numerical result. Thirdly, no rotor that is induced
by the downward flow in the lee wave motion is found on the upper boundary.

Fig. 21 shows the time history of the drag coefficient Cy on the hill over a period of integration
0 <t <500. The Cy4 variations for K =0-0.8 show a regular fluctuation with a constant amplitude.
It is apparent that there is periodic vortex shedding from the separation bubble behind the hill. For
K =1, the Cy4 oscillations rapidly decay after about # =100 and reach an almost constant value. This
phenomenon implies that due to the generation of the long lee wave, the vortex shedding is strongly
suppressed so that the flow around the hill becomes an almost steady state. A further investigation
of the Cy variations shows that small fluctuations are seen for all the cases. This can be attributed
to the existence of the secondary eddy induced in the separation bubble behind the hill, as shown
in Fig. 19.

Fig. 22 shows the time history of Cy, u; and u, over a period of integration 0 < ¢ < 500. For
K =13 and 1.5, different from Fig. 11(a) and (b), C4 variations show an almost steady state,
corresponding to the stationary lee wave. It is much more likely that there is no significant change
in the approaching flow just ahead of the hill, because the change in the u; is very small. For
K = 1.8, the persistent periodic Cy oscillations are observed, different form Fig. 11(c). This may be
due to the fact that the change in the u; is significantly dominant. For K =2, Cjy oscillations rapidly
decay after about # =100, similar to Fig. 11(d). Interestingly, we can see short-period oscillations in
the Cy for all the cases, just as in Fig. 21. Namely, although lee waves are excited downstream of
the hill, the vortex shedding from the separation bubble behind the hill clearly exists (see Fig. 23).

Fig. 23 shows the time-averaged drag coefficient Cyq on the hill for 0 < K < 3. The arrows in the
figure indicate the fluctuations from the time-mean values. Cy decreases locally at integral values
of K=1, 2 and 3, similar to Fig. 18. Fig. 23 also summarizes the flow characteristics around the
hill for 0 < K < 2. The flow patterns can be classified into three regimes: Regime-A, in which the
vortex shedding from the separation bubble generated behind the hill is dominant; Regime-B, in
which the flow unsteadiness caused by the columnar disturbance cannot be observed; and Regime-C,
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Fig. 22. Time history of drag coefficient Cy4 on a hill, columnar mode with n=1 (u;) and mode with n=2 (u;) for strong

stratification (1 < K < 2), Re=2000.
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Fig. 23. Variations of drag coefficient Cy on a hill with K (0 < K < 3), Re=2000. In addition, the flow characteristics
around the hill for 0 < K < 2 are summarized. For K =2.5 and 3, the flow around a hill becomes complicated.
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in which the flow unsteadiness caused by the columnar disturbance can be observed. Furthermore,
both Regime-B and Regime-C can be classified into two separate regimes. In Regime B-1, due to
the generation of the stationary lee wave with long wavelength, the vortex shedding is strongly
suppressed so that the flow around the hill rapidly reaches an almost steady state as time proceeds.
In Regime B-2, on the other hand, although the stationary lee wave is excited downstream of the
hill, the vortex shedding clearly exists. The flow field that is accompanied by the vortex shedding
shows persistent periodic Cy oscillations in Regime C-1 and decaying Cy oscillations in Regime
C-2. These flow features for K > 1.6 are almost similar to those observed in the prior numerical
results under imposition of a free-slip condition on the ground, both upstream and downstream of
the hill, as shown in Fig. 18. However, the only significant difference occurs in the range of K.
The flow unsteadiness around the hill is observed over the whole range 1.1 < K <2 in the prior
numerical results, in which persistent periodic oscillations in the Cy are observed for 1.1 < K < 1.7,
and decaying Cy oscillations are observed for 1.8 < K < 2.

5. Conclusions

We have performed a direct numerical simulation (DNS) on stably stratified flows over a two-
dimensional hill in a channel of finite depth at a Reynolds number of 2000 for a wide range of
K (0 < K < 3). In these simulations, as a first step, we assumed a free-slip condition on the ground,
both upstream and downstream of the hill, and imposed a no-slip condition only on the hill surface,
much as in the previous towing tank experiments (Castro et al., 1990; Baines, 1995) and numerical
studies (Castro, 1989; Hanazaki, 1989a, b; Paisley and Castro, 1994a, Paisley et al., 1994b). Since
such a configuration introduces no vortex shedding from the hill, clear-cut characteristics of flows
around the hill may be expected.

(1) For strong stratification (1 < K < 2), the present numerical results with Re =2000 confirmed
that the flow around the hill is intrinsically unsteady, which is manifested very clearly as periodic
oscillations in the drag coefficient C4 on the hill, and emphasize the following features. The flow
unsteadiness is mainly due to the periodic modification in the flow just ahead of the hill. Namely, the
flow modification is caused by the periodic shedding of upstream advancing columnar disturbances,
which are generated from the hill, of mode n=1 with a clockwise circulation. A low-Cy state
corresponds to the situation, in which the columnar disturbance of mode n=1 is just about to
detach from the hill, while a high-Cy state corresponds to the situation, in which this disturbance
has just detached from the hill. For 1.1 <K < 1.7, columnar disturbances with mode n=1 are
dominant so that the flow around the hill shows a persistent periodic unsteadiness. For 1.8 < K < 2,
as columnar disturbances with mode n=1 disappear and those with mode n=2 become dominant
instead, the flow around the hill rapidly reaches an almost steady state.

(2) There is a significant difference in the normalized periods (U7T/H) of Cy oscillations be-
tween the values predicted by Rottman et al. (1996) (i.e., Eq. (1f)) and those obtained from the
present calculations with Re =2000. Through the calculations with the blockage ratio H/h=6,10
and corresponding Re =20, 100 and 2000, it is found that the normalized periods of Cy oscillations
for K=1.5 have a strong dependence on both the H/h and Re. At the same blockage ratio, as
the Reynolds number decreases, the normalized periods of Cy oscillations tend to reach an almost
same value predicted by Eq. (1f). Furthermore, as the blockage ratio becomes larger, the trend in
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approaching the predicted value by Eq. (1f) is remarkable at the same Reynolds number, especially
for the case with Re=2000. This is likely due to the inhibition of the non-linear effect on the
periodic flow unsteadiness around the hill. Therefore, it is reasonable to conclude that in the present
numerical results with H/A=6 and Re =2000 the non-linear effect can be strongly enhanced, even-
tually leading to the differences between the predicted values by Eq. (1f). In particular, it is shown
that the effect of the blockage ratio is relatively dominant, rather than the Reynolds number in the
range 20 < Re < 2000.

As a next step, in order to investigate the flow around the hill under real atmospheric situations,
we have performed calculations under imposition of a no-slip condition on the ground. Under these
physical conditions, the Reynolds number was taken to be relatively high so that the unsteady
separated—reattached flow behind the hill and the subsequent vortex shedding could be formed. To
avoid a troublesome boundary layer effect, we employ a free-slip condition on the ground upstream
of the hill, much as in our previous numerical study (Ohya et al., 1992). A no-slip condition is
imposed on the hill surface and the downstream of the hill. Particular emphasis is placed on the
effect of stable stratifications on the unsteady separated—reattached flow behind the hill.

(3) The flow around the hill exhibits different behavior over the whole range 0 < K < 2, corre-
sponding to the difference in the boundary condition on the ground. For 0 < K < 0.9, the vortex
shedding from the separation bubble behind the hill occurs. For K =1 and 1.1, the flow around
the hill is markedly different from that in the cases of K =0-0.9, mainly due to the generation of
the stationary lee wave with long wavelength. As time proceeds, the vortex shedding is strongly
suppressed so that the flow around the hill rapidly reaches an almost steady state. Under strong
stratification (1 < K < 2), although lee waves are excited downstream of the hill, the vortex shed-
ding clearly exists. For 1.2 < K < 1.5, the flow field with a vortex shedding shows an approximately
steady state, corresponding to the stationary lee wave. It is much more likely that there is no sig-
nificant change in the approaching flow just ahead of the hill, because the change in the columnar
disturbances with mode n=1 is very small. Only when 1.6 < K < 2 does the flow around the hill
become unsteady. However, due to the no-slip condition on the ground, the rate of the periodic
change in the approaching flow immediately upstream of the hill is remarkably smaller than that of
the prior numerical study under imposition of a free-slip condition on the ground, both upstream
and downstream of the hill. Accordingly, the rate of the periodic change in the separation bubble
is very small. For K =1.9 and 2, as columnar disturbances with mode n =2 become dominant, the
flow around the hill rapidly reaches an almost steady state. These flow mechanisms for 1.6 < K <2
are almost the same as those discussed in the prior numerical results. The only significant difference
occurs in the range of K. The flow unsteadiness around the hill is observed over the whole range
1.1 <K <2 in the prior numerical results, in which persistent periodic oscillations in the Cy are
observed for 1.1 < K < 1.7, and decaying C4 oscillations are observed for 1.8 < K < 2.
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