対馬海峡における表層流動構造の 季節変動特性

吉川裕、増田章、丸林賢次、石橋道芳、奥野章 yosikawa@riam.kyushu-u.ac.jp

> 九州大学 応用力学研究所 力学シミュレーション研究センタ-

発表内容

- 計測状況の改善(報告)
- 計測精度検証まとめ
- 対馬海峡における季節変動特性
 - 月平均
 - 短周期
- その他

計測状況の改善(報告)

CODAR 型レーダー

- 受信機をより高い (4~5M) 位置に設置
- 志賀島局・青海局
- 成長した周囲の樹木による遮蔽を回避

青海局受信機かさあげ後

志賀島局受信機かさあげ後

実線:ループ1/ループ3.破線:ループ2/ループ3. 黒:かさあげ後.青・赤・緑:かさあげ前. かさあげ後(黒)のデータは5倍して表示.

2004 海洋レーダ研究集会

RD 社製 ADCP

古野社製 ADCP

ADCP との比較地点

計測精度検証

ADCP との比較結果

150

V^{HF} vs V^{HF}

計測精度検証のまとめ

相関係数及び二乗平均平方根

ADCP	Depth(м)	Radar	COR	Slope	RMSE	NUM
RD	13	C1,C2,N1,N2	0.78	1.18	7.70	91
Furuno	5~9	ALL	0.78	0.89	9.95	3637
Radar Pair	Depth(м)		COR	Slope	RMSE	NUM
С1-С2(50км)	~2		0.90	0.89	4.96	2583
С1-С3(110км)			0.79	1.06	9.46	1544

● 一時間毎のレーダー計測値の分散誤差は大きい

過去の直接測流結果

論文		観測・解析手法
Miita and Ogawa	(1984)	過去の測流結果の整理
Kaneko et al.	(1991)	船舶搭載 ADCP、夏季
Катон	(1993)	船舶搭載 ADCP、4 往復法による除潮、夏季
EGAWA ET AL.	(1993)	船舶搭載 ADCP データ収集
ISOBE ET A.	(1994)	曳航式 ADCP
JACOBS	(2001)	係留式 ADCP、夏季

過去の測流結果(まとめ)

明らかなこと

- 流れは西水道の方が東水道より強い
- 西水道では夏季あるいは初冬季に最強流となる
- 東水道では中央部で強い流れ
- 東水道対馬沿岸では南西向きの流れ

不明なこと

- 西水道での流れの構造
- 東水道九州沿岸域での流れ(北東向き?南西向き?)
- 水平二次元構造およびその季節変化

問題点

- データが時空間的に疎ら
 - ・ 活発な漁業活動のため長期係留観測は難しい
 - 船舶観測の限界
- 潮流成分を除くのが困難

解決策

- 頻繁な定期観測
 - ・定期旅客船カメリア設置 ADCP よる定期観測 航路断面上に時空間的に密な流速データ →西水道最強流時期は夏と秋(ダブルピーク)
 - 海洋短波レーダーによる定期観測
 水平二次元構造

レーダー観測域

観測の概要

● 観測期間:2002 年2月~(局によって異なる)

● レーダー仕様

アンテナ方式	クロスループアンテナ方式	フェイズドアレイアンテナ方式		
	(CODAR)	(JRC)		
計測深度	\sim 172см	\sim 98cm		
計測時間分解能	1 時間毎	1 時間毎 (30 分間計測)		
距離方向分解能	3.0км	1.5км		
角度方向分解能	5.0°	7.5°		

解析手法

- 解析期間:2002年2月~2004年8月
- 各月5割以上計測されている点で視線方向流速を調和解析
- 月平均視線方向流速から月平均ベクトルを算出 (二機種の計測値を区別しない)
- 複数年にわたるデータを各月毎に単純平均

月平均流動構造(12月・3月)

月平均流動構造(6月・9月)

月平均北東流成分の EOF 解析

2004 海洋レーダ研究集会

月平均北東流成分の EOF 解析

月平均流動構造の季節変化

北東流速・成層の季節変化

成層無し(一層模型)

成層有り(二層模型)

まとめ

季節変動特性のまとめ

西水道

- 7~8月、10~11月に流速最大
- 対馬暖流主軸は対馬沿岸(水深 100M~200M の領域)
- 空間構造の時間変化小

東水道

- 7~8月に流速最大
- ・ 強流帯は水道中央部(100m 以深の領域)
- 5~11月に壱岐東方で強い南西流
- 8 ~ 1 0 月に反流域が拡大
- 8~10月に対馬東方で強い南西流
 - 成層の影響
- ▶ 壱岐東方で冬季に南東 ~ 南西流
 - 冬季季節風の影響?

短周期変動

<u>1</u>

短周期変動のまとめ

東西水道の振舞

- 東水道は6月~11月に短周期渦が卓越
 - ・ 成層による地形と自転の束縛からの開放
- 西水道は9月~3月に短周期渦が卓越
 - ・ 地形の効果…?

月平均流速の季節変化

