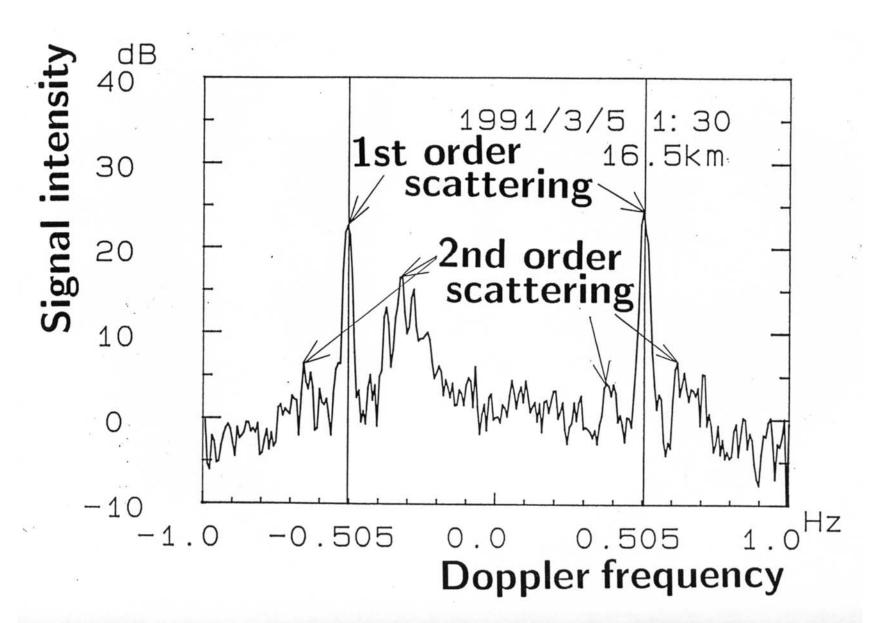
低SN比ドップラースペクトルからの波浪推測の試み

久木幸治 (琉球大学•理学部)

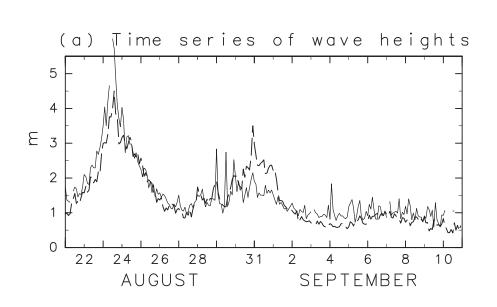
目的

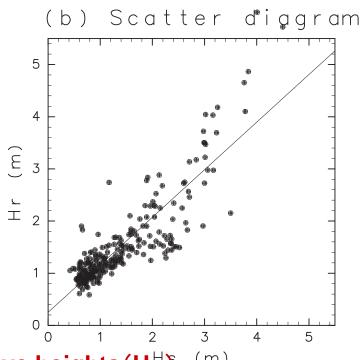
海洋レーダによる波浪観測の実用化のため、 多少SN比が悪いドップラースペクトルから、 波浪推定を行い、その品質管理ができるよう にする。

ドップラスペクトルの例



波高比較例





Solid line: Radar (Hr), dashed line: JMA wave heights (Hb) (m)

Cor. Coef.=0.87, rms dif.=0.45m, Hr=0.91Hs+0.25

Hisaki (2005)

原理: 拘束条件

- 1. 1次散乱と波浪スペクトルの関係式
- 2. 2次散乱と波浪スペクトルの関係式
- 3. 波浪スペクトルエネルギー平衡方程式: スペクトル, 海上風速・風向
- 4. 連続の式: 海上風速・風向
- 5. スペクトル値が周波数に対して滑らかに変化
- 6. エネルギー平衡方程式における移流項が 小さい

最適化問題

$$U(\mathbf{x}) = \frac{1}{2} \sum_{K=1}^{N_t} [\lambda_{wM} F_K(\mathbf{x})]^2$$

$$\Longrightarrow \text{minimize}$$

 F_K : 拘束条件式

 ${f x}$: 未知数(スペクトル+風向・風速) N_t : 方程式個数

 λ_{wM} (M=1,...,6): 重み(拘束条件の種類に依存)

過去の研究との違い

- ドップラースペクトルと波浪スペクトルの 関係式:対数から線形へ
- 使用したドップラー周波数範囲を広げる。

線形と対数

$$\sigma_2(\omega_D) \left[\int_{-\infty}^{\infty} \sigma_1(\omega_D) d\omega_D \right]^{-1} = P_{c2}(\omega_D),$$

$$\log(\sigma_2(\omega_D) \left[\int_{-\infty}^{\infty} \sigma_1(\omega_D) d\omega_D \right]^{-1}) = \log(P_{c2}(\omega_D)),$$

 $\sigma_i(\omega_D)$: 1st- & 2nd-order RCS

 $P_{c2}(\omega_D)$: Normalized Doppler spectrum

 ω_D : Doppler frequency

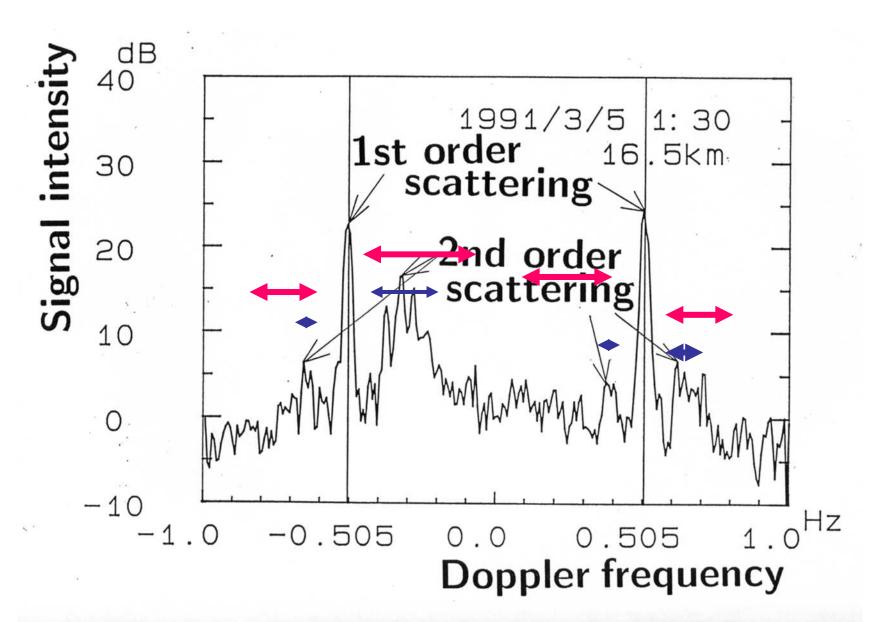
線形と対数

- SN比が低く、雑音レベル近くのドップラースペクトル値を波浪推定計算に使う場合、線形にせざるを得ない。
- 線形の場合、推定される波高は、最も高い ドップラースペクトル値に依存する。

過去の研究との違い

- ドップラースペクトルと波浪スペクトルの 関係式:対数から線形へ
- 使用したドップラー周波数範囲を広げる。

ドップラスペクトルの例



ドップラー周波数の範囲拡張

 得られた波浪スペクトルの低・高周波雑音を 避けるため、0に近いドップラースペクトル値も 波浪推定計算に使用。

初期値の設定

初期スペクトル,風速・風向は極座標格子点に依存しない

- 1. 1次散乱(拘束条件1)→風向
- 2. スペクトルをパラメータ表示して,一次及び二次 レーダ散乱断面積の式(拘束条件1,2)から,パラ メータを求める。
- 3. 一次及び二次レーダ散乱断面積の式(拘束条件1, 2)及び「スペクトル値が周波数・波向に対して滑ら かに変化」(拘束条件5)から,最適化アルゴリズム によって初期スペクトル推定 (L-M法も可能)
- 4. 初期スペクトルの周波数スペクトルから経験的に 風速推定

解は初期値に大きく依存 f

二次レーダ散乱断面積の式(拘束条件2) 及び「スペクトル値が周波数・波向に対して滑らかに変化」 (拘束条件5) から,最適化アルゴリズムによって初期スペクトル推定

拘束条件2の重み(λ w₂)に対する拘束条件5 (正則化)の重み(λ w₅)に依存

重みパラメータ

初期値 case A: $\lambda_{w5}=10^{-2}$ case B: $\lambda_{w5}=10^{-1}$ case C: $\lambda_{w5}=1$

$$\lambda_{w1} = \sqrt{72/11}\lambda_{w2}$$
$$\lambda_{w2} = 1$$

1. 1次散乱

2. 2次散乱

3. エネルギー平衡方程式

4. 連続の式

5. 正則化

6. 移流項

```
本計算 case 1: (\lambda_{w2}, \lambda_{w3}, \lambda_{w5}) = (100, 1, 1) case 2: (\lambda_{w2}, \lambda_{w3}, \lambda_{w5}) = (1000, 1, 1) case 3: (\lambda_{w2}, \lambda_{w3}, \lambda_{w5}) = (1000, 10, 1) \lambda_{w1} = \sqrt{72/11}\lambda_{w2} \lambda_{w4} = 1, \lambda_{w6} = \lambda_{w5}
```

• 3×3通りの重みに関して計算

データの品質管理

- ドップラースペクトルデータの品質管理
- 波浪データの品質管理

ドップラースペクトルデータの 品質管理

$$H_r \propto \left[\frac{\int_{-\infty}^{\infty} \sigma_2(\omega_D)/w(\omega_D/\omega_B)d\omega_D}{\int_{-\infty}^{\infty} \sigma_1(\omega_D)d\omega_D}\right]^{1/2}$$

 H_r : Significant waveheight,

 $\sigma_1(\omega_D)$, $\sigma_2(\omega_D)$: 1st- & 2nd-order RCS.

 ω_D : Doppler frequency

 $\omega_B = (2gk_0)^{1/2}$: Bragg frequency,

w(): weighting function

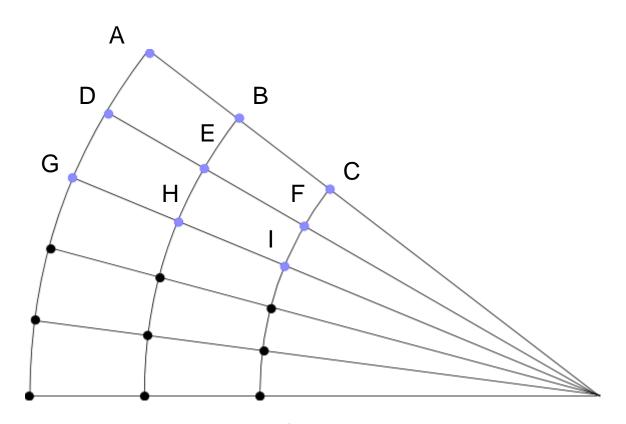
Barrick, 1977

Hrがその前後の時間で、他のよりもはるかに 大きい場合、そのドップラースペクトルを除く

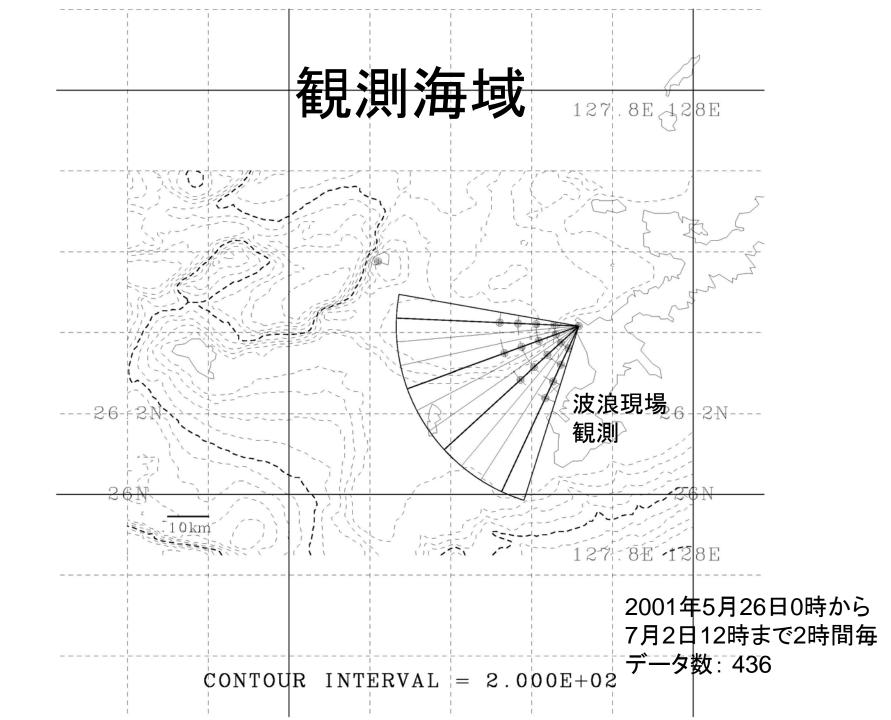
ドップラースペクトルデータ処理

- 2次散乱/1次散乱の大きなドップラースペクトルの除去
- ドップラースペクトルの平滑化
- ノイズフロアを差し引く

ドップラースペクトルの平均化



AからBまでのドップラースペクトルを平均して、 Eのドップラースペクトルとする。



波浪・レーダパラメータ

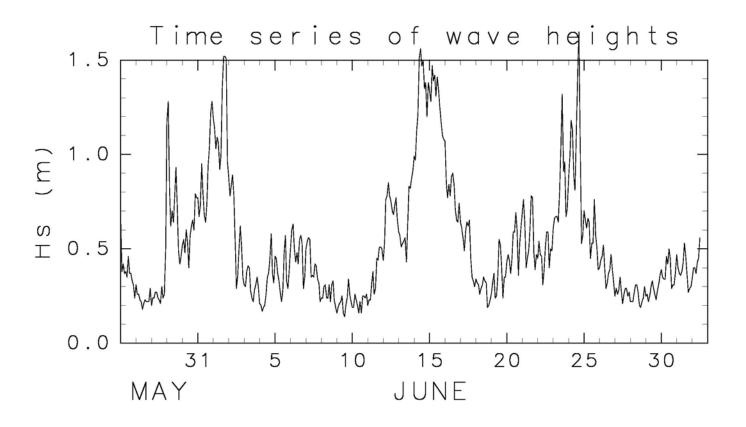
- 波浪周波数分割数 $M_f=21$
- 周波数比 1.15, 周波数範囲0.0497—0.813Hz
- 波向分割数 $M_d=18$
- 電波波長 $2\pi/k_0 = 12.2$ m
- 極座標格子 (r,ψ_B)

$$r = r_{min} + \Delta r(i-1), \quad (i = 1, ..., N_r)$$

 $\psi_B = \psi_{Bmin} + \Delta \psi(j-1), \quad (j = 1, ..., N_B)$
 $r_{min} = 6 \text{km}$ $\Delta r = 4.5 \text{km}$
 $\psi_{Bmin} = -182.5^{\circ}$ $\Delta \psi = 22.5^{\circ}$ $N_r = N_B = 4$

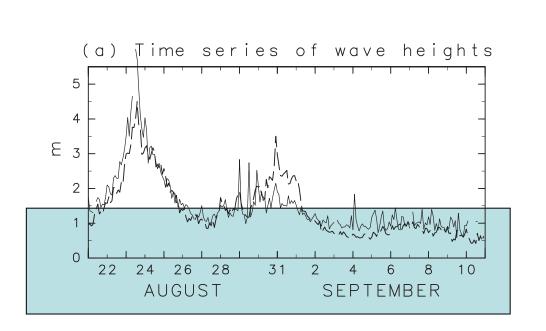
• 未知数の個数=スペクトル値個数+風速・風向個数 $N_u = M_f M_d N_r N_B + 2N_r N_B = 6080$

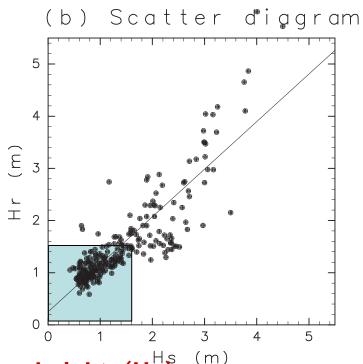
波高の時系列



平均値= 0.53 m , 標準偏差= 0.32 m: レーダ波高精度より小さい

波高比較例



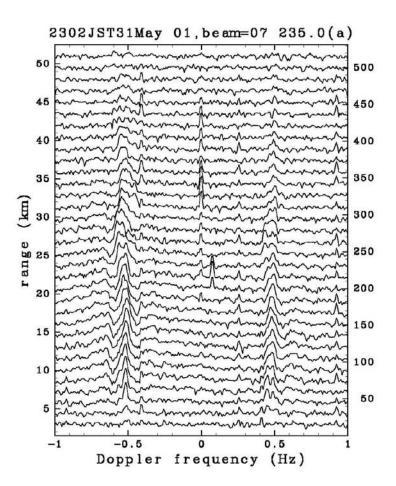


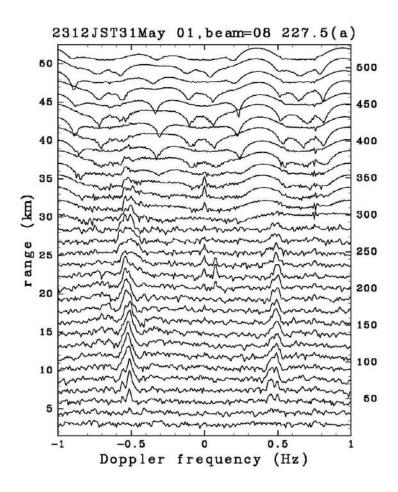
Solid line: Radar (Hr), dashed line: JMA wave heights (Hs)

Cor. Coef.=0.87, rms dif.=0.45m, Hr=0.91Hs+0.25

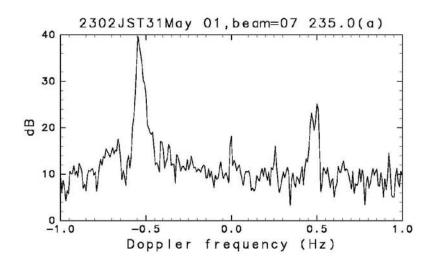
Hisaki (2005)

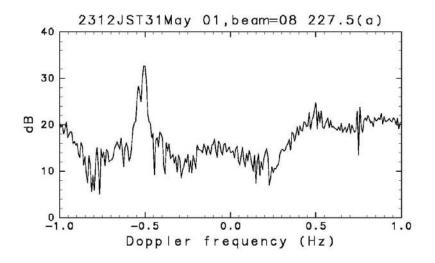
ドップラースペクトルの例



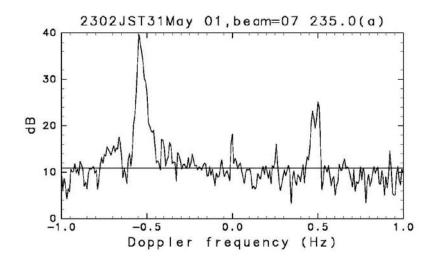


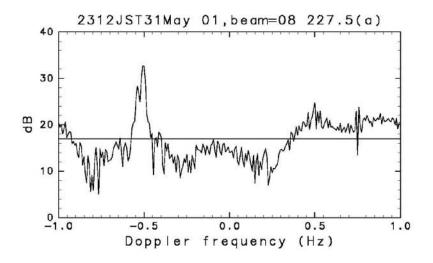
ドップラースペクトルの例





ドップラースペクトルの例





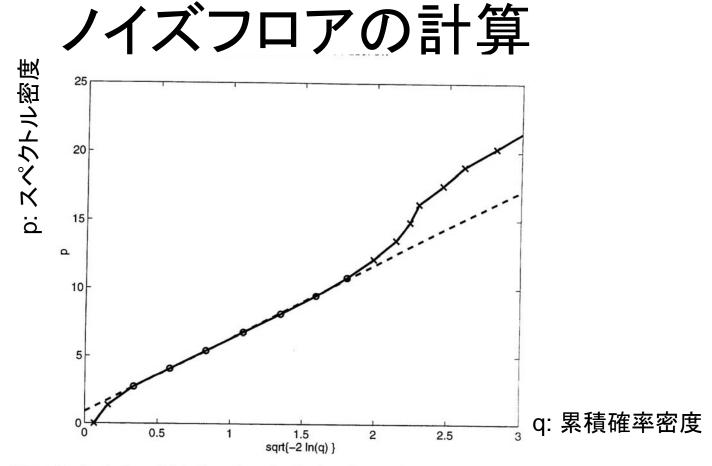
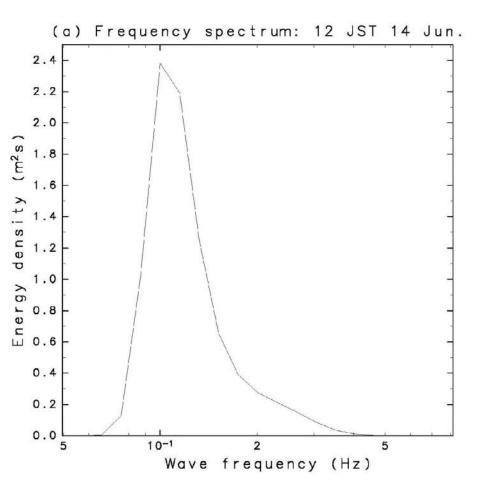
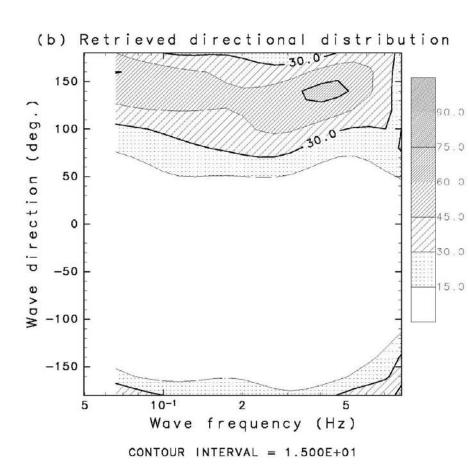


Figure 4. A selection of data from the noise-dominated part of the spectrum showing the straight line least squares fit to the points marked with circles. The Rayleigh parameter σ' is determined from the slope, and the offset B' is the intercept.

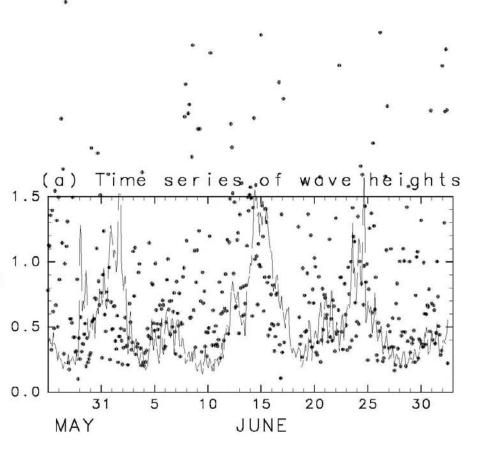
波浪スペクトルの例

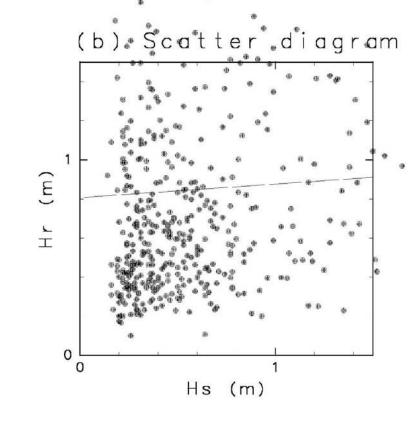




規格化した方向分布

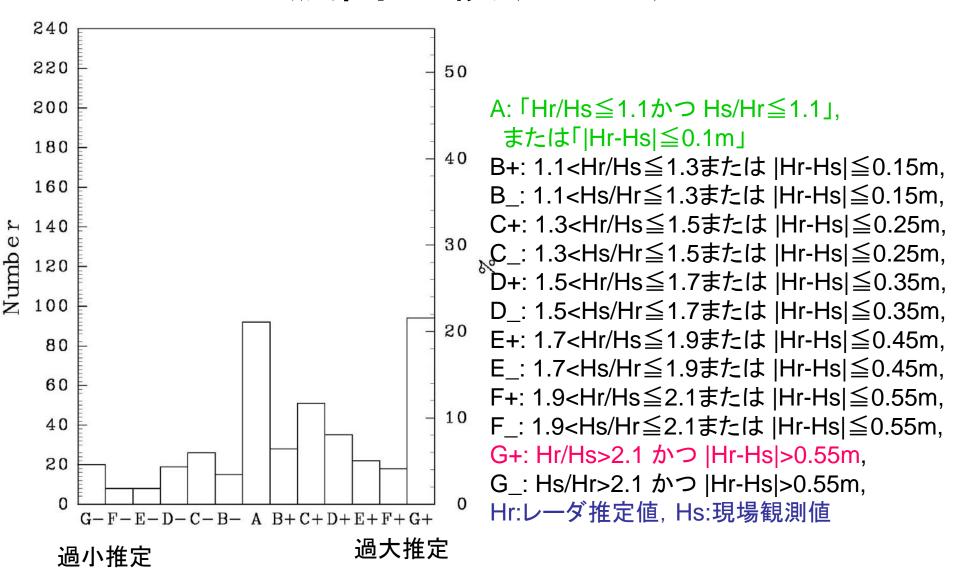
波高比較(A-1)の時系列及び散布図





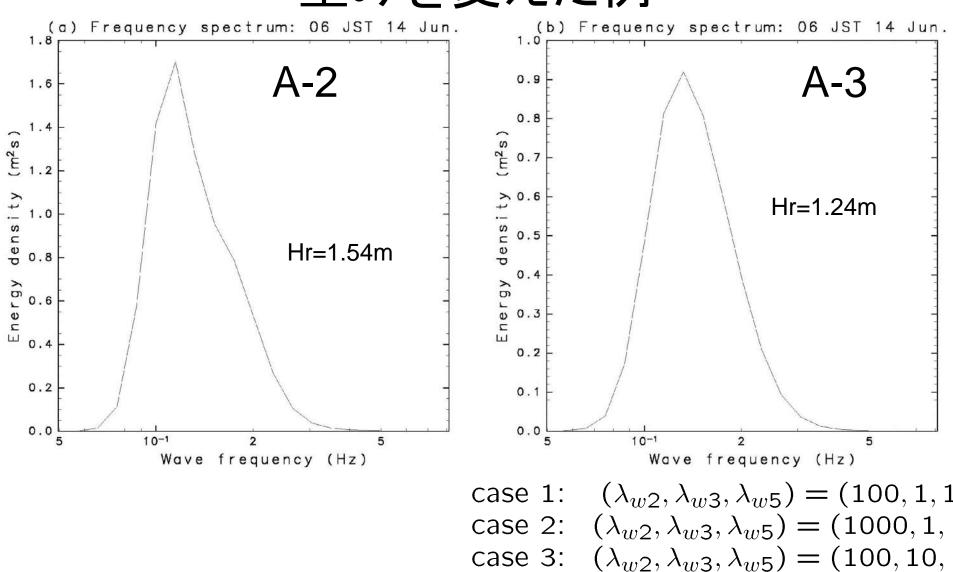
case A: $\lambda_{w5} = 10^{-2}$ case 1: $(\lambda_{w2}, \lambda_{w3}, \lambda_{w5}) = (100, 1, 1)$ case B: $\lambda_{w5} = 10^{-1}$ case 2: $(\lambda_{w2}, \lambda_{w3}, \lambda_{w5}) = (1000, 1, 1)$ case 3: $(\lambda_{w2}, \lambda_{w3}, \lambda_{w5}) = (100, 10, 1)$

波高比較(A-1)



重みを変えた例

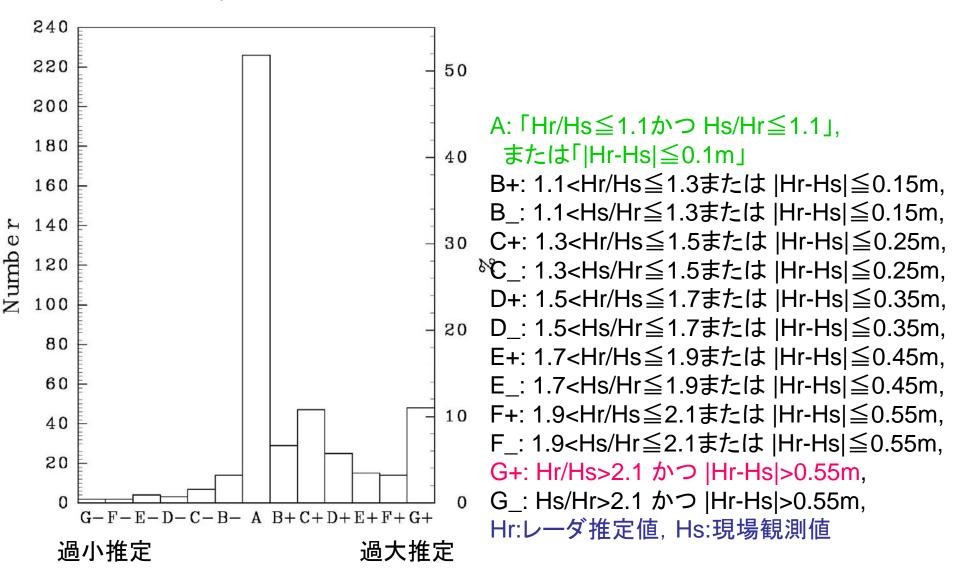
Hs=1.21m (現場観測)



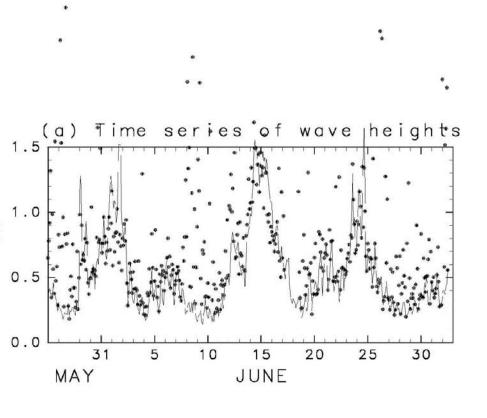
$$\lambda_{w1} = \sqrt{72/11}\lambda_{w2}$$

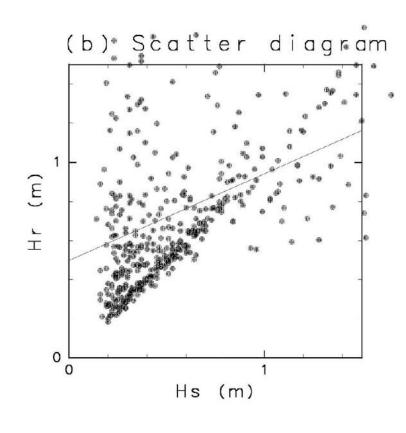
$$\lambda_{w4} = 1, \quad \lambda_{w6} = \lambda_{w5}$$

現場観測値に適合した波高



現場観測値に適合した波高 (時系列・散布図)





波浪データの品質管理

- 高・低周波数スペクトル値が高いデータを除去
- 波高変化(下の式)の小さいものを選択。
- 前後と波高差の大きいものをデータを除去。

$$F(t + \Delta t) = F(t) + (-C_g \nabla F + S_t) \Delta t,$$

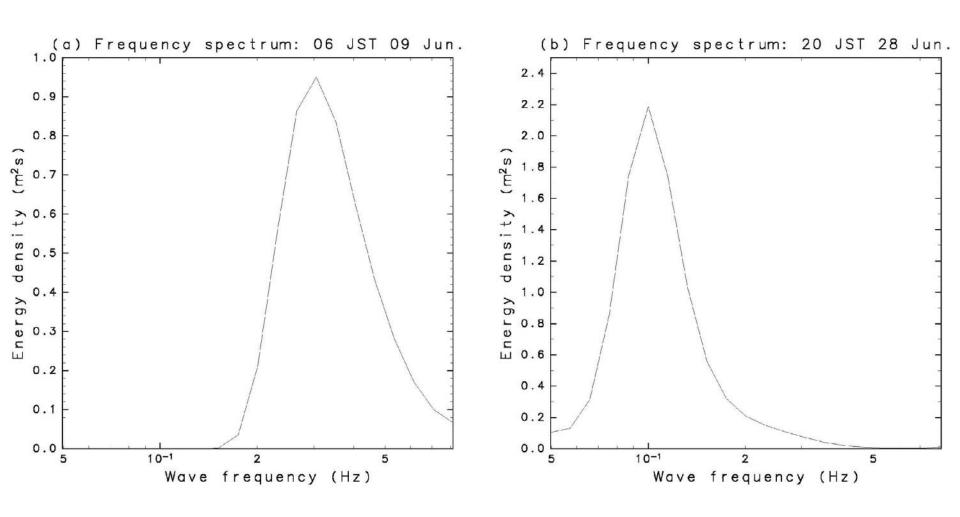
$$H_r(t) = 4 \left[\int \int F(\omega, \theta, t) \right]^{1/2} d\theta d\omega,$$

$$H_{dif} = H_r(t + \Delta t) - H_r(t)$$

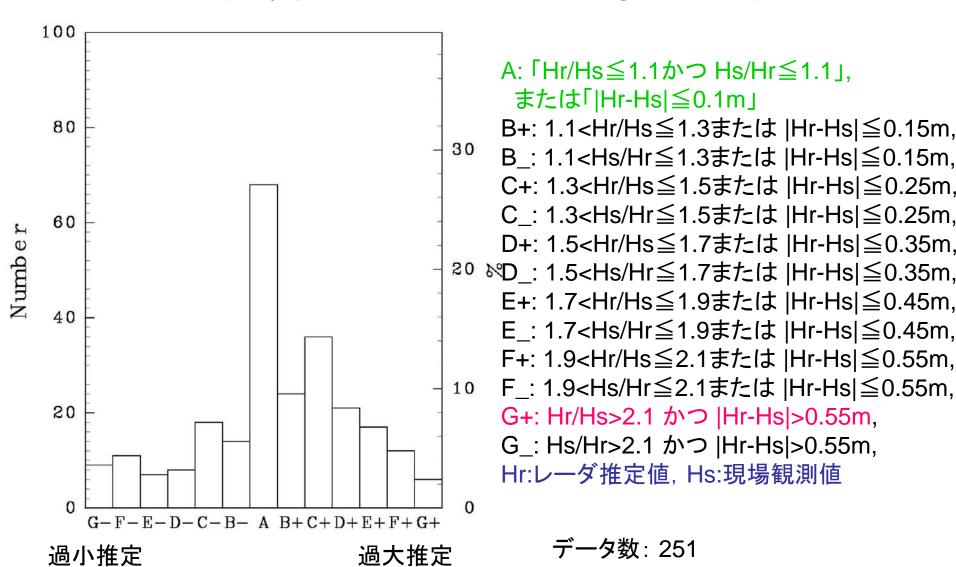
F: Wave spectrum, \mathbf{C}_q : group velocity vector,

 S_t : Source function

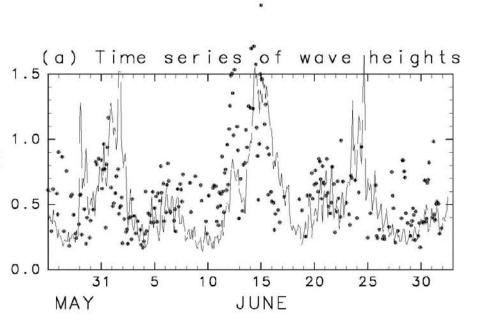
除去するスペクトルの例

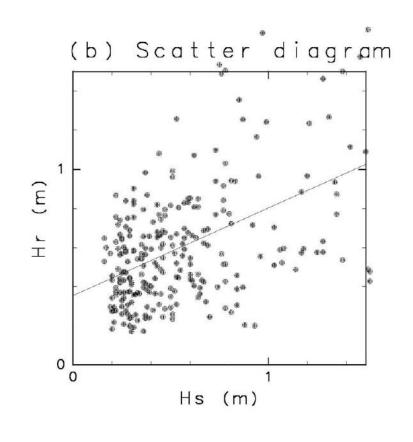


品質管理された波高比較



品質管理された波高比較 (時系列・散布図)





相関:0.48, rms差:0.33m

まとめと今後の課題

- 低波高の条件下で、低SN比(高々10dB)の ドップラースペクトルから波浪推定を行った。
- 重みを適切に選べれば、波浪推定が可能。
- 波高時系列及び波高時間変化より、波浪データの品質管理可能。
- ドップラースペクトルの品質管理についてさら に改良する必要がある。

終わり

終わり