流速場の空間変化により生じる海洋レーダ流速計測誤差 — 直線状流速フロントの場合

灘井章嗣 (NICT)

海洋渦の場合(シアー無、Vo/Co=0.125)

ー次散乱エコーのレーダ散乱断面積 (RCS)

視線流速分布シミュレーション

一次散乱エコースペクトル形状

一次散乱エコーのスペクトル
 送信電力 P_t, レーダ感度分布 G, 感度範囲 S
 レーダ位置 **r**_r, ターゲット位置 **r**_t

$$P_r(v_D, k_t, \mathbf{r}_t) = \frac{P_t}{\mathbf{16}\pi k_t^2} \int_S \frac{G(\mathbf{r}')\sigma^0(v_D, \mathbf{k}_t)}{|\mathbf{r} + \mathbf{r}'|^4} d\mathbf{r}',$$

$$\mathbf{r} = \mathbf{r}_t - \mathbf{r}_r,$$

$$\mathbf{k}_t = k_t \frac{\mathbf{r} + \mathbf{r}'}{|\mathbf{r} + \mathbf{r}'|}$$

レーダ感度分布の広がりがターゲット距離に比べ十 分小さい場合、

$$P_r(v_D, k_t, \mathbf{r}) = \frac{P_t}{16\pi k_t^2 |\mathbf{r}|^4} \int_{S'} G(\mathbf{r}') \sigma^0(v_D, \mathbf{k}_t) d\mathbf{r}'$$

S' ターゲット周辺

レーダ感度分布

$$G(\mathbf{r}) = G_0 \exp\left(-\left(\frac{|\mathbf{r} - \mathbf{r}_c|}{b_w}\right)^2 \ln 2\right)$$

 G_0 最大感度 b_w 半值幅 • 一次散乱エコーのレーダ散乱断面積 Bragg共鳴条件 $\mathbf{k}_B = \pm 2\mathbf{k}_t$

レーダ送信波:
垂直偏波、入射角 90 度、波数ベクトル
$$\mathbf{k}_t$$

Doppler速度: v_D

$$\sigma^{0}(v_{D}, \mathbf{k}_{t}) = 64\pi |\mathbf{k}_{t}|^{4} \{ S(\mathbf{k}_{B}^{+}) \delta(v_{D} - v_{R}(\mathbf{k}_{B}^{+})) + S(\mathbf{k}_{B}^{-}) \delta(v_{D} - v_{R}(\mathbf{k}_{B}^{-})) \}$$

$$= \sigma^{0+}(v_{D}, \mathbf{k}_{t}) + \sigma^{0-}(v_{D}, \mathbf{k}_{t})$$

$$v_{R}(\mathbf{k}_{B}^{\pm}) = C_{p}(\mathbf{k}_{B}^{\pm}) + v_{r}$$

$$= \pm \sqrt{\frac{g}{|\mathbf{k}_{B}|}} + \mathbf{V} \cdot \frac{\mathbf{k}_{t}}{|\mathbf{k}_{t}|}$$

 $S(\mathbf{k})$ スペクトル密度, C_p 位相速度, g 重力加速度 それぞれの一次散乱エコースペクトルの形状 $P'^{\pm}(v_D, k_t, \mathbf{r}) = \int_{S'} G(\mathbf{r}') \sigma^{0\pm}(v_D, \mathbf{k}_t) d\mathbf{r}'$

ローカル海洋波浪スペクトル密度

• 波浪スペクトル推定

 $S(\mathbf{k}) = \psi(k)G(\theta)$

流速場の影響を受ける前の波浪スペクトル 方向スペクトル $G_s(\theta_s)$ は一様 波数スペクトル $\psi_s(k_s) \sim k_s^{-\frac{7}{2}}(\phi_s(f) \sim f^{-4})$

仮定: 波浪の生成消滅は無視できる wave action conservation が成立

$$rac{E(k)}{\sigma} = rac{\psi(k)A}{\sigma} = \text{const}$$

E wave packetが持つエネルギー
A wave packetの仮想的広がり
 $\sigma = \sqrt{gk}$ wave frequency

流速場の影響をうけた波数スペクトル $\psi_e(k_e)$

$$\psi_e(k_e) = (\frac{\sigma_e}{\sigma_s})(\frac{A_s}{A_e})\psi_s(k_s)$$

流速場による波数スペクトルの変化

$$\Delta \psi_e(k_e) = \left(\frac{k_e}{k_s}\right)^{\frac{1}{2}} \left(\frac{A_s}{A_e}\right) \frac{\psi_s(k_s)}{\psi_s(k_e)}$$

= $\Delta \sigma_k \ \Delta \sigma_A \ \Delta \sigma_{\psi}$

$$k_s, \frac{A_s}{A_e} \rightarrow$$
ray equation による推定

Ray Equationと正規化

• Ray Equation (Dimensional) location of wave group: \mathbf{x}^* wavenumber vector: \mathbf{k}^* group velocity: \mathbf{C}_g^* current velocity: \mathbf{u}^* wave frequency: ω_0^* intrinsic frequency: ω^*

$$d\mathbf{x}^*/dt^* = \mathbf{u}^* + \mathbf{C}_g^*$$

$$d\mathbf{K}^*/dt^* = -\mathbf{K}^* \cdot (\nabla^* \mathbf{u}^*)$$

$$\omega_0^* = \omega^* + g^* \mathbf{K}^* \cdot \mathbf{u}^*$$

$$\omega^{*2} = g^{*2} |\mathbf{K}^*|$$

$$\mathbf{C}_g^* = \frac{1}{2} \sqrt{\frac{1}{|\mathbf{K}^*|} \frac{\mathbf{K}^*}{|\mathbf{K}^*|}}$$

modified wavenumber vector $\mathbf{K}^*:$

$$\mathbf{K}^{*}~=~rac{\mathbf{k}^{*}}{g^{*}}$$

 g^* : acceleration of gravity

• 正規化

- 長さ: 渦の半径 R₀*
- 速度: Bragg共鳴条件を満たす海洋波の位相速度 C_p*

⇒ 時間: R_0^*/C_p^*

• Normalized Ray Equation

location of wave group: \mathbf{x} modified wavenumber vector: \mathbf{K} group velocity: \mathbf{C}_g current velocity: \mathbf{u}

$$d\mathbf{x}/dt = \mathbf{u} + \mathbf{C}_g$$

$$d\mathbf{K}/dt = -\mathbf{K} \cdot (\nabla \mathbf{u})$$

$$\mathbf{C}_g = \frac{1}{2} \sqrt{\frac{1}{|\mathbf{K}|} \frac{\mathbf{K}}{|\mathbf{K}|}}$$

$$\frac{A_e}{A_s} = \int_{t_s}^{t_e} (\nabla \cdot \mathbf{u}) dt$$

シミュレーションモデル流速場

次元流速フロントモデル

$$U(y) = -U_0 \cos(\phi)$$
 (y > 1)
 $-U_0 \cos(\phi) \sin(\pi y/2) (-1 \le y \le 1)$
 $U_0 \cos(\phi)$ (y < -1)
 $U_0 \cos(\phi)$ (y < -1)
 $V(y) = -U_0 \sin(\phi)$ (y > 1)
 $-U_0 \sin(\phi) \sin(\pi y/2) (-1 \le y \le 1)$
 $U_0 \sin(\phi)$ (y < -1)
 U_0 : 最大流速
 ϕ : 流速フロントの発散/シアー比パラメータ
 $\phi = 0^\circ$: シアーのみ
 $\phi = 90^\circ$: 発散のみ、 $\phi = -90^\circ$: 収束のみ

横軸 θ_T:

海洋レーダ視線流速計測に寄与する海洋波成分が 流速フロント軸(y=0)と成す角

90度の場合に両者は直交

U₀/C_p=0.125, Ø=0の場合

計算結果 - レーダ散乱断面積 ($U_0/Cp = 0.125$, $\phi = 0^\circ$)

計算結果 - レーダ散乱断面積 ($U_0/Cp = 0.125$, $\phi = 30°$)

計算結果 - レーダ散乱断面積 ($U_0/Cp = 0.125$, $\phi = -30^\circ$)

波向変化モデル

ー次元流速フロントモデル $\partial U / \partial x = 0$ $\partial U / \partial y = -(\pi/2)U_0 \cos(\phi)\cos(\pi y/2)$ $\partial V / \partial x = 0$ $\partial V / \partial y = -(\pi/2)U_0 \sin(\phi) \cos(\pi y/2)$ Ray equation $dx/dt = U + C_{qx'} dy/dt = V + C_{qy}$ $dk_x/dt = -k_x(\partial U/dx) - k_v(\partial V/dx) = 0$ $dk_v/dt = -k_x(\partial U/dy) - k_v(\partial V/dy)$ $= (\pi/2)U_0 \cos(\pi \gamma/2) k \cos(\phi - \theta)$

 $t = (k_x^2 + k_y^2)^{1/2}$

 k_x は一定 (= k_{x0}) k_y は流れと波向が直行する場合に一定 - A その前後で増減が変わる $k_x=0$ の場合、常に $\theta=0$ で一定 - B $k_x=0$ 付近で dk_y の符号が同じ場合には、 k_x の正負により $d\theta$ の符号が変化する

波向が変化しないケース
・波向が流向に直行する場合 - A
・波向が流速フロントの軸に直行する場合 -B

計算結果 - レーダ散乱断面積 ($U_0/Cp = 0.125$, $\phi = 60^\circ$)

計算結果 - レーダ散乱断面積 ($U_0/Cp = 0.125$, $\phi = -60^\circ$)

計算結果 - レーダ散乱断面積 ($U_0/Cp = 0.125$, $\phi = 90^\circ$)

計算結果 - レーダ散乱断面積 ($U_0/Cp = 0.125$, $\phi = -90^\circ$)

計算結果 - 視線流速 $(U_0/C_p = 0.125, \phi = 30^\circ)$

計算結果 - 視線流速 $(U_0/C_p = 0.125, \phi = 60^\circ)$

計算結果 - 視線流速 $(U_0/Cp = 0.125, \phi = 90^\circ)$

まとめ

直線状流速フロントを短波海洋レーダで観測した場合に、 流速の空間変化が視線流速計測に与える影響について、シミュレーションを行った。

- ・一次散乱に寄与する海洋波成分
 - ・波数ベクトル
 - ・流速フロント軸に平行な波数成分: 流速場の影響なし
 - ・流速フロント軸に直行する波数成分: 流速場に逆らって(従って)伝搬する場合に減少(増大)
 - ・波向: 波数ベクトルが「流速フロントの軸に直行する場合」と「流速に直交する場合」変化なし
 - 伝搬
 - ・波向ベクトルが流速シアーに逆らう場合、流速フロントを通して伝搬できない場合がある。
 - ・この場合、海洋レーダは流速フロントの反対側から伝搬して来た波浪成分を観測する。

・レーダ散乱断面積

- ・流速シアー:本来の海洋波成分が流速シアーに逆らって(従って)伝搬する場合に増加(減少)
 ・収束発散:発散(収束)によりRCSは減少(増加)
- 海洋レーダが計測する視線方向流速エラー
 ・海洋波成分の本来の位相速度の逆向き

計算結果 – 流速ベクトル $(U_0/Cp = 0.125, \phi = 0^\circ, 交差角90^\circ)$

計算結果 – 流速ベクトル $(U_0/Cp = 0.125, \phi = 0^\circ, 交差角90^\circ)$

計算結果 – 流速ベクトル $(U_0/Cp = 0.125, \phi = 0^\circ, 交差角90^\circ)$

