~ 海洋レーダーで拓く海洋情報の未来 ~

海洋レーダーによる強潮流観測の試み

朝日航洋株式会社 岩松 伸宏 宮村 茂 斉藤 雅司

海上保安庁海洋情報部 福島 繁樹 熊谷 武

2007年12月20日

主な項目

観測の概要

観測の目的と概要 設置期間 観測場所・設置状況 使用機器

観測データについて

強潮流データの解析方法 強潮流観測の検証 強潮流域の抽出結果

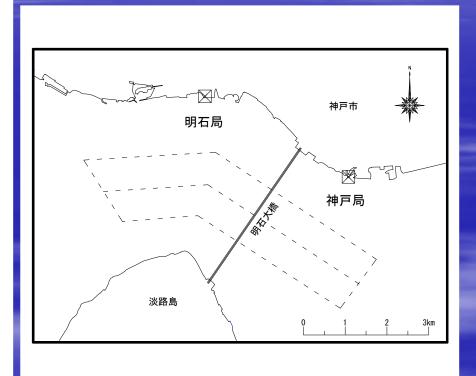
まとめ

今後の検討課題等

本観測の目的と概要

- ・鳴門海峡や明石海峡に代表される強潮流が発生する狭水道では、 航行船舶が輻輳し、また、交叉することから、従来の流速計による 観測が困難である
- ・狭水道において海洋レーダーによる面的観測を行うことで、 潮流予測精度を向上させ、船舶の航行安全に寄与する
- ・面的に詳細な潮流予測システムを構築する

平成17年度、18年度に(財)日本水路協会が実施した「強潮流域の面的潮流観測及び 予測システム構築」の観測成果を使用



強潮流観測を実施した場所と期間

海峡名	観測機器設置点	観測期間	
	網干島局-大磯埼局	2005/07/14~08/18(34日間)	
鳴門海峡	宮の鼻局-室局	2005/08/19~09/05(17日間)	
	孫埼局-室局	2005/09/05~09/22(17日間)	
明石海峡	明石局-神戸局	2006/07/13~08/18(36日間)	

観測機器設置箇所

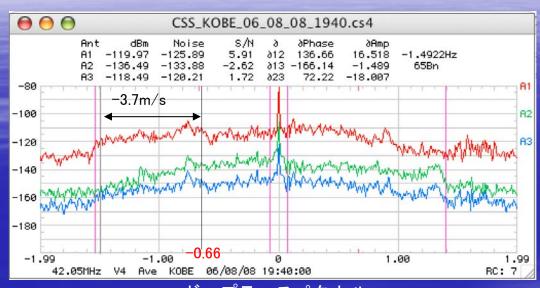
鳴門海峡

明石海峡

機器設置状況

神戸局

孫崎局



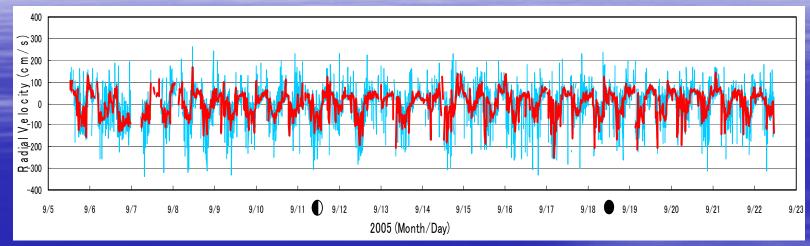
使用機器

項目		性 能 等		
機種		Codar Ocean Sensors社製 SeaSonde		
使用周波数		41.75~42.05MHz		
周波数掃引幅		300kHz		
レーダー形式		FMICW方式		
送信出力		25W		
掃引繰り返し周波数		4Hz		
アンテナ	型式	垂直モノポール(送受)、クロスループ(受信)		
アンナリ	偏波	垂直偏波		
	距離分解能	500m		
観測性能	観測範囲	約0.5km~16km		
	計測最大值	2.36m/s		
	流速分解能	1.4cm/sec		
	方位分解能	1度、5度		

強潮流データの解析方法 1

280 240 40 150 120 40

ドップラースペクトル (神戸局3.5kmレンジ)

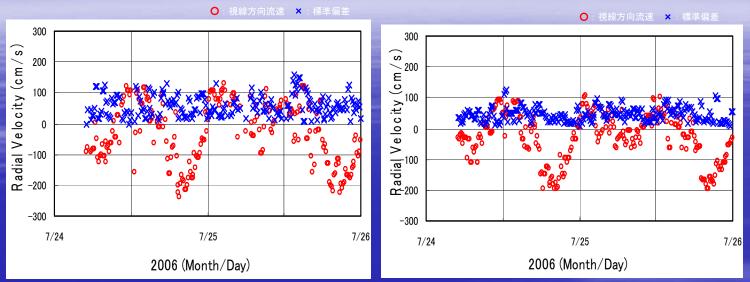

視線方向流速(神戸局2006/08/08 19:40)

流速を求めるドップラー周波数は、左右対称である両側のピークを特定して 求めているが、これを遠ざかる片方だけのピークを使用することで、計測最大 流速は拡がる可能性がある。

ドップラー周波数の抽出方法を改良(Codar社が実施)し、ドップラーピークが中央部付近を越える場合は、片側のピークだけを使用して流速を算出するようにした。

強潮流データの解析方法 2ー1

- : 7分間平均 - : 27分間平均

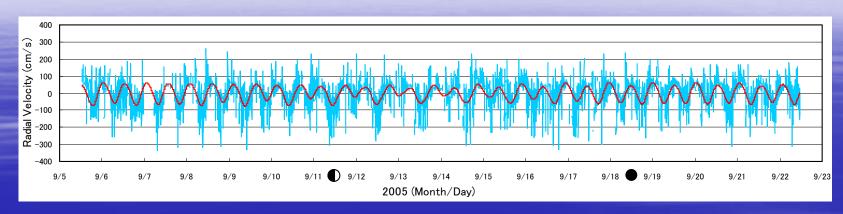


平均化時間を7分と27分に変化させて視線方向流速を比較した図

使用した海洋レーダーの計測方法は、0.25秒毎に掃引を行い、128秒間 (512回掃引)の信号をクロススペクトルとして記録している。

- ・平均化プログラムに使用するデータを、ノイズ判定に必要と考えられる3個以上とした場合、平均化時間の最小は約7分(128秒×3個)となる。
- ・27分間平均は比較的明瞭に周期的な流速変化がみられるが、強流速については明らかに7分間平均に出現しており、平均化時間は7分が有効と考えられる。

強潮流データの解析方法 2ー2

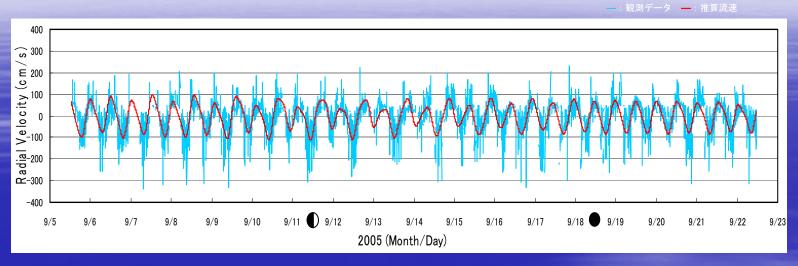


方向分解能を1°と5°にした視線方向流速と標準偏差の時系列変化

使用した海洋レーダーの空間的分解能は、距離レンジが500m、方向分解能は1°又は5°のいずれかの選択が可能

- ・方向分解能1°の経時変化はバラツキが大きく標準偏差も大きくなるが、5°のものよりも強い流れが出現している。
- ・図の最大流速は方向分解能5°では-200cm/s弱であるが、1°では 約-240cm/sとなり、<mark>2割程度の強い流速</mark>となっている。
- ・強流速の抽出方法としての方向分解能は1°が有効であると考えられる。

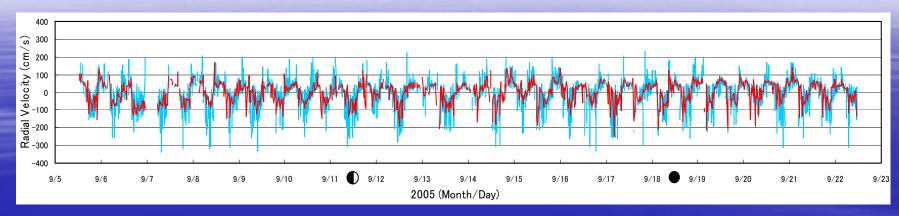
強潮流データの解析方法 3ー1



方向分解能1°、7分間平均の5分間隔出力とした1セルの観測データと、データから調和分解を行い視線方向流速の推算値

潮流が卓越して規則的な流況変動を示す海域では、各セルの視線方向流速も規則的な経時変化を示すと仮定し、各セルの観測期間における観測値と推算流速を比較

- ・観測データには推算流速の方向(符号)とは反転(逆符号)した強流速が出現している場合もあるため、ノイズ等が含まれている可能性が大きい
- ・観測データと推算流速を比較し、符合が反転しているデータを除去
- ・弱い流れは推算流速と符号が異なる場合も多く、除去対象は±50cm/s以上


強潮流データの解析方法 3ー2

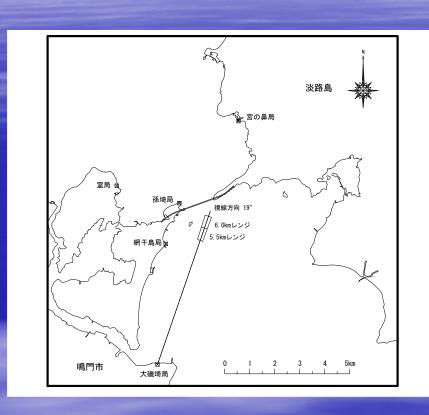
50cm/s以上の視線方向流速で推算流速と符号が反転しているデータを除去した観測データ

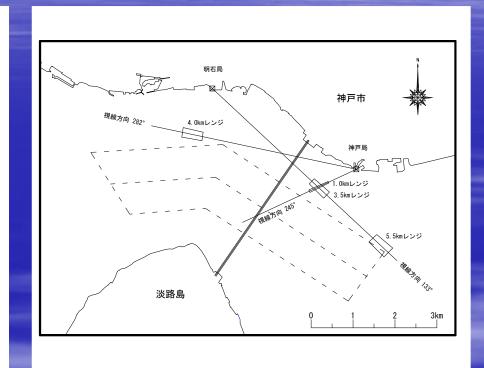
・近接する時間で不整合の部分もみられるが、除去前と比較すると、<mark>不規則な突出し</mark> たデータが少なくなっている

強潮流データの解析方法 3ー3

従来多く用いられる平均化時間を27分とした計算結果と重ねたもの

- ·周期的変化は27分平均値に近似し、強流時間帯には強流速が抽出されている。
- ・位相が従来方法と一致していることは、異常と考えられるデータが除去されたことをを示すものと考えられる。
- ·潮流成分が卓越する流況場において、推算流速との比較による異常データの除去 方法は有効と考えられる。


強潮流データの解析方法 4ー1


	鳴門海峡	明石海峡	
使用船舶	うずしお(第五管区海上保安本部)	傭船	
機種	CI-60(古野電気製)	ワークホースADCP(RD社製)	
観測層	海面下4m	海面下3m(航走)、2m(定点)	
観測方法	15秒毎の平均値	2秒間隔	
流速精度	$\pm (2\% + 0.2 \text{kn})$	±6.1cm/sec	
対地速度	ボトムトラッキング法	ボトムトラッキング法	

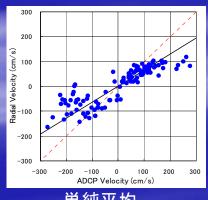
海洋レーダーの観測期間に実施したドップラー流速計(ADCP)の観測諸元

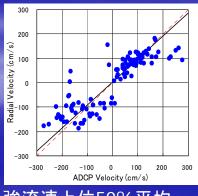
- ・空間的規模及び時間スパンの平均化計算にあたって、平均化に用いる全データを比較し、その中で異常データの除去方法を検討。
- ・検討の比較データとして、海洋レーダーの精度検証の目的で実施したADCP観測値を 用いた。

強潮流データの解析方法 4-2

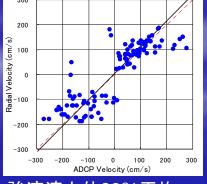
ADCP観測において強流速の出現した海洋レーダー観測のレンジセルの位置

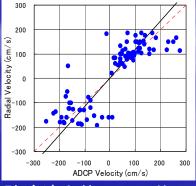
強潮流データの解析方法 4ー3

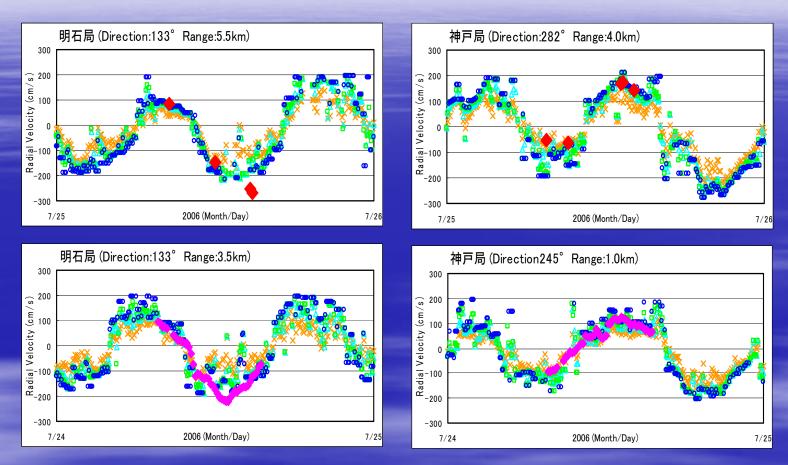


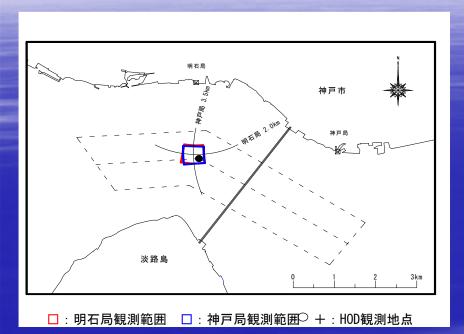

- ・ADCPの観測は、海洋レーダーの視線方向と同一測線を選定し、測線上を航走観測
- ・ADCP観測によるデータは、視線方向流速に変換後、海洋レーダーの各距離レンジ毎(500m)に平均して比較データとした。
- ・明石海峡では航走観測に加えて定点において約8時間の連続観測を実施し、10分間の平均値を比較データとした。
- ・海洋レーダーの観測値は、これまで検討した強流速抽出と異常値除去の計算処理を 行い、5分間隔の視線方向データを作成した。

海洋レーダデータの平均 方法	データ数	相関係数	RMS {cm/s}	回帰係数A	回帰係数 B(cm/s)
全データ単純平均	112	0.88	73.6	1.54	-1.6
強流速上位50%平均	112	0.88	61.7	1.06	−2.5
強流速上位30%平均	112	0.87	64.6	0.95	-3.9
強流速上位10%平均	91	0.86	67.2	0.85	−2.5


海洋レーダの平均化方法とADCPの比較

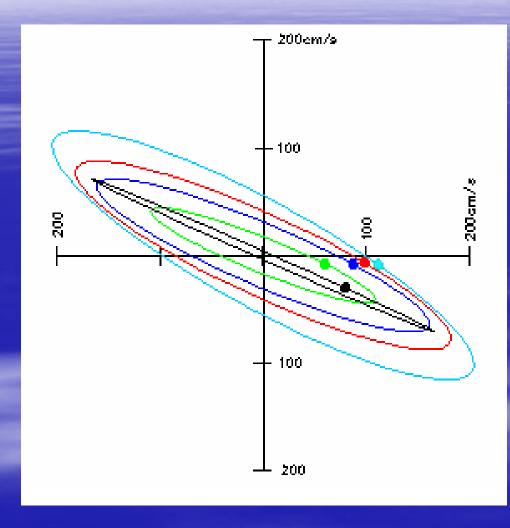

里剎 半均


強流速上位50%平均



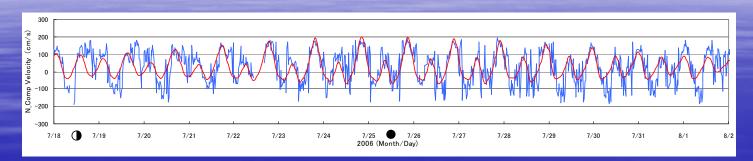
強流速上位30%平均

強流速上位10%平均

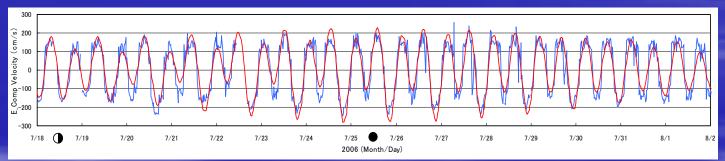


海洋レーダーとHODの観測位置

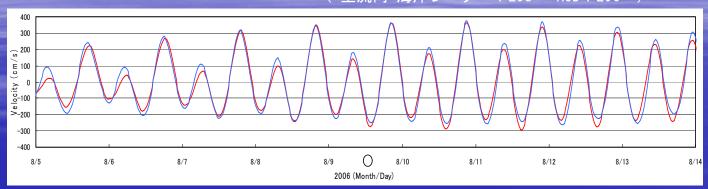
種別	位置	観測層	調和分解期間
海洋レーダ	34° 37′ 2 5″ N 135° 00′ 27″ E	海面下 0.5m	2006 07/18~08/02 (15昼夜)
HOD	34° 37′ 24″ N 135° 00′ 32″ E	海面下 5m	1995 06/13~07/14 (32昼夜) 1995 09/08~09/22 (32昼夜)


海洋レーダーとHODの調和分解諸元 (HOD調和定数は2期間の定数ベクトル平均値)

- ・明石海峡では、過去に海洋情報部(HOD)が流速計による潮流観測を実施しており、 検証として、海洋レーダー観測値を用いて調和分解を行いHOD資料との比較を行った。
- ・海洋レーダーの観測地点は、HODの観測地点に近接する2つのレーダー局の距離 レンジ交点とし、この交点を中心に半径250mに入る範囲のデータを使用した。
- ・データ作成の平均化時間と出力間隔はともに20分とした。


- ・楕円形状は、海洋レーダーはHOD よりは若干丸みのある形状である が、長軸はほとんど同じ方向である
- ・長軸の振幅は、海洋レーダーの単純平均値はHODよりかなり小さい値であるが、強流速上位50%あるいは30%の平均ではHODに近似した値である
- ・HOD及び海洋レーダーとも南中時がほぼ同じ位置で、回転方向も同じであることから、同様な時刻変化を示すことを表わしている。
 - -:海洋レーダー(単純平均)
 - --:海洋レーダー(強流速上位30%平均)
 - --:海洋レーダー(強流速上位10%平均)
 - --:海洋レーダー(強流速上位10%平均)
 - -: HOD
 - ●:南中時(楕円は全て右回転)

北方分速

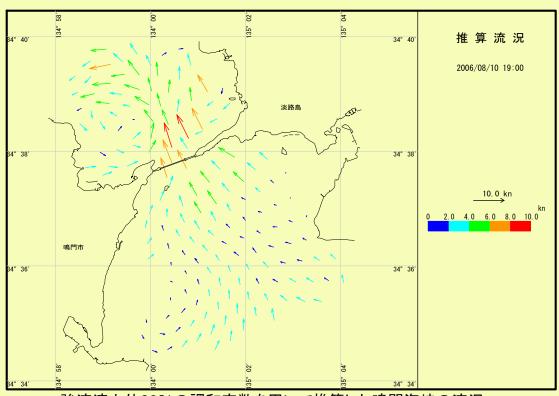

調和分解に用いた強流速上位30%の分速曲線と、同じ期間のHODの調和定数から求めた推算曲線

東方分速

- ・位相は東方・北方分速とも海洋レーダーの観測値はHODの推算値によく合致している。
- ・振幅は大潮期の東方分速で海洋レーダーは若干小さめであるが、それでも250cm/s程度の流速は抽出されている。

--: 海洋レーダー「強流速上位30%平均」--: HOD推算値

上図は、強流速上位30%を用いた調和分解結果から主流向成分の大潮期の流速を推算し、HOD調和定数による推算のものと重ねたもの

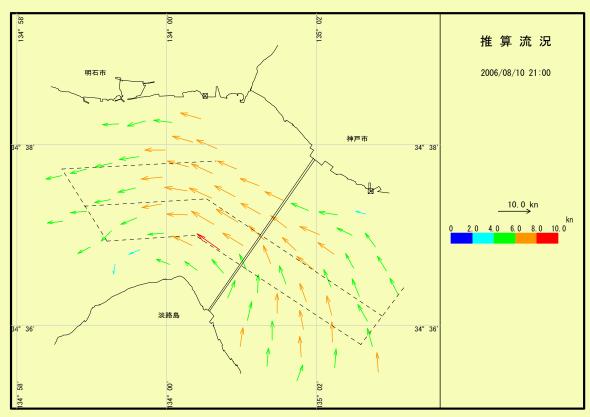

- ・位相、振幅とも海洋レーダーとHODはよく合致し、どちらも最大流速は400cm/s程度が出現することを示している
- HOD資料との検証結果は、海洋レーダーの強流速上位の観測値を用いることにより 近似する
- ・最も近似する強流速上位の割合は、調和分解によるM2分潮の振幅では30~50%である

強潮流域抽出のフローチャート

- ① ドップラー周波数の抽出方法の改良
- ② 観測範囲及び平均化時間の最小化
- ③ 推算流速との比較による異常データ除去
- ④ 複数セルの平均化計算過程での強流速抽出
- ⑤ 空間的平均化範囲の設定

面的強潮流の把握

鳴門海峡の強潮流抽出結果



強流速上位30%の調和定数を用いて推算した鳴門海峡の流況

推算時刻は2006年8月の大潮期におけるほぼ最強予報時である。

・大潮期最強流速は、鳴門海峡では9ノット以上と言われているが、推算した流速は、 最強地点で8ノット以上の流速が出現している。海洋レーダーは500m矩形範囲の平均 流速であり、この空間的条件を考慮した場合、オーダー的には近似した値が抽出できた ものと考えられる。

明石海峡の強潮流抽出結果

強流速上位30%の調和定数を用いて推算した明石海峡の流況

推算時刻は2006年8月の大潮期におけるほぼ最強予報時である。

・大潮期最強流速は、明石海峡では7ノット以上と言われているが、推算した流速は 最強地点で8ノット以上の流速が出現している。

まとめ

面的な流況観測の手法として、海洋レーダーの有効性が認められつつあるが、強潮流域での観測は、世界的にも観測事例は非常に少ない。

一般的な観測機器による強潮流域の観測は非常に困難であり、海洋 レーダーによる観測の精度が立証されれば、強潮流域における新しい 観測手法として非常に有効である。

今後の課題

- ・強潮流時におけるドップラー周波数の抽出方法の改良
- ・ノイズ除去や平均化計算の手法の工夫
- ・他の観測方法との比較
- データ処理のパラメータ等について検証
- •より良い観測位置の選定と機器設置条件