流速データの信頼度評価指標の提案と データ同化への応用

大阪大学大学院 工学研究科 田尾 雄喜·長谷川 剛基·西田 修三

海洋レーダーの概要と大阪湾における観測

Bragg 散乱の 概 念図

2006年春に海洋レーダーが設置され、観測が開始された.

ほぼリアルタイムで流速が配信 されている.

•浮遊ごみの挙動予測

・シミュレーションの高度化

異常な流速の出現頻度(2007年)

	1月	4月	8月	10月	総計
データ総数	744	720	744	744	2952
すべて欠損となった	92	2	3	6	103
データ数	(12.4%)	(0.3%)	(0.4%)	(0.8%)	(3.5%)
ー部欠損となった	40	15	23	32	110
データ数	(5.4%)	(2.1%)	(3.1%)	(4.3%)	(3.7%)
異常流速を示した	48	64	42	50	204
データ数	(6.5%)	(8.9%)	(5.6%)	(6.7%)	(6.9%)

異常な流速を示す出力データ

目的

- 流速の信頼度評価
 - 流速データの信頼性を把握する
- ・データ同化への応用
 - 広域の観測により得られたデータを用いて, シミュレーションへの応用を試みる

• 流速の信頼度評価

異常な流速を示す場合のスペクトルデータ例 スペクトルデータにおいて一次散乱ピークが

- ・ノイズに埋もれている場合
- ・急峻でない場合

流速の信頼度評価指標① ー次散乱ピークがノイズに埋もれている場合

評価指標: 一次散乱ピークと全平均エネルギーの比(PAR)

流速の信頼度評価①

流速の信頼度評価指標(2) 一次散乱ピークが急峻でない場合

評価指標: 一次散乱ピークエネルギーの1/10値幅(-10dB幅)

流速の信頼度評価2

0~1の値で信頼度を評価

1/10値幅による信頼度の空間分布 (2008/12/7 21:00 A局)

11

ビームの交差角

 流速の誤差は、それぞれのビーム視線方向の誤 差の1/sinα倍となる(Nadaiら、2006)

1/sinαの分布(α:交差角)

流速の信頼度評価指標の統合

Innth

1

0.2 Beam交差角による信頼度の空間分布

(2008/12/7 21:00 A局) 13

・データ同化への応用

データ同化の概要

• 観測値を用いて数値計算結果を補正する

- 広域の常時観測による膨大なデータが必要

- 海洋レーダーでは広域の表層流況を常時観測しており, データ同化への応用に適している

運動量補正:ΔV×(Uo-Uc)/τ

海洋レーダーのデータ同化 ~計算条件~

主な計算条件:

流動モデル	ROMS: Regional Ocean Modeling System
格子数	東西方向:86, 南北方向:73, 鉛直方向:20
水平空間格子間隔	沖側:1000m,湾奥部;500m
鉛直空間格子間隔	水深を20層に分割 (s-座標系)

計算期間:

2008年7月22日~8月15日 (同化期間15日(8月1日~15日))

ナッジングタイムスケール τ (days): $\tau = \begin{cases} 1 \\ 0.5 \\ 0.1 \end{cases}$

(運動量補正: $\Delta V \times (U_0 - U_c)/\tau$)

再現計算結果(同化なし)

表層の15日間平均流(8月1日~15日)

データ同化結果(表層の15日間平均流(8月1日~15日))

水温のデータ同化

MODIS衛星による海面水温の観測

- NASA地球観測衛星TERRA/AQUAによって観測されたデータを, JAXA/地球観測研究センター(EORC)が、準リアルタイム処理して公開 している.
- 分解能 :1km
- 観測頻度 :1日約5~6回

海面水温のデータ同化に用いる

観測例(2008/8/15 10:47)

水温補正:Δ*t*×(*To*-*Tc*)/τ

画像及びデータ:宇宙航空研究開発機構(JAXA/東海大学(TSIC/TRIC)提供 21

水温の同化計算結果

表層の15日間平均流速・平均水温分布(8月1日~15日)

• 海面水温の同化により水温が補正され、全体的に海面水温が低くなっている.

《流速の信頼度評価》

- S/N 比を表す実用的な指標として、ピーク/平均エネルギー比(PAR) を用いて信号特性を評価することができた.
- ピークの急峻さの指標として、1/10 値幅(-10dB 幅)を用いて信号特性 を評価することができた。
- これらの指標を用いてデータの信頼度を指数化し、その空間特性の解析 を行った、また、信頼度の統合化手法についても検討を行った。

《3次元流動モデルへのデータ同化》

- Nudging 法を用いた試行計算を行った結果, ナッジング係数により再現 結果に差異が生じ, ナッジング係数のさらなる検討の必要性が示唆された. →信頼度の導入など
- 衛星によって観測された海面水温のデータ同化より、計算水温が補正された。