A SYNERGISTIC APPROACH FOR STOKES DRIFT ESTIMATION

John Matthews (RIAM, ENSA) Yutaka Yoshikawa (RIAM)

"SYNERGISTIC" (→ MULTI-INSTRUMENT) APPROACH FOR 13 AUGUST 2006 IN THE TSUSHIMA STRAIT

- HF radar observations covering the Strait (both NJRC and CODAR systems operated)
- Moored ADCP data within radar coverage
- Along Track Stereo Sun Glitter (ATSSG) surface current data from PRISM images on 13/08/06

PRISM = Panchromatic Remote sensing Instrument for Stereo Mapping (a sensor on ALOS)

HISTORY OF THE ATSSG TECHNIQUE

• ATSSG:

"The Along Track Stereo Sun Glitter Technique"

- First attempted during early ocean remote sensing experiments:
- Matthews et al., 1988: Remote sensing of shelf sea currents by HF radar, *Journal of Geophysical Research*.
- Matthews, 1990: Synergistic use of satellite infrared and HF radar near a shelf sea temperature boundary, *International Journal of Remote Sensing*
- Matthews et al., 1993: (HF) Radar observation of an along front jet and transverse flow convergence associated with a North sea front, *Continental Shelf Research*.
- Matthews et al., 1997: The observation of the surface roughness characteristics of the Rhine plume frontal boundaries etc... *International Journal of Remote Sensing.*

CONCEPT OF THE ATSSG TECHNIQUE

- Relies on differential inter-comparison of 2 or 3
 Sun glitter images from along-track data takes
- Adjacent image pairs are normally separated in time by about 1 minute

Figure 2: ASTER stereo geometry and timing of the nadir-band 3N and the back-looking sensor 3B (after 8). An ASTER nadir scene of approximately 60 km length, and a correspondent scene looking back by 27.6° off-nadir angle and acquired about 60 seconds later, form, together, a stereo scene.

SUN GLITTER (SG)

The direct reflection of sunlight from a water (ice) surface Early Sun glitter research \rightarrow key advances in Satellite Oceanography

SUN GLITTER brightness reversal

Plate 1a. A surface slick imaged as a sun glint feature (rectangle) of the Atlantic Ocean off the French coast near Brittany. Photograph taken from an aircraft (Dornier 228) of the Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR) at an altitude of 3200 m on November 27, 1987, 1043 UTC (wind speed 2-3 m/s; courtesy of A. Viola, Consiglio Nazionale delle Richerche, Rome).

Plate Ib. Same as Plate 1a, some seconds later.

PRISM – launched in 2006 on ALOS provides a new opportunity for ATSSG applications

"Front" + Abundant Internal Waves in Tsushima Strait!!!

RESOLUTION OF MOTION DETECTION IN PRISM SUN GLITTER

PRISM spatial resolution = 2.5 m

Time between Back and Nadir images (or Nadir and Forward images) = 45.3 s

Basic Motion Resolution without averaging = 2.5/45.3 = 0.055 m/s

ATSSG → Wind Speed from Cloud Shadow Motions

Data near the ADCP mooring on 13/08/06

ATSSG wind at cloud height (11.11 LT)
 speed = 3.9 m/s, direction = 31.2 deg wrtE

 Predicted 11.00 LT 10-m wind based on assimilation at 09.00 LT

speed = 2.8 m/s, direction = 27.7 deg wrtE

Calibration of ATSSG currents

 Calibrate by comparing to known velocity of Hakata-Pusan jetfoil ferry

Calibration

- Logged ferry speed = 41 knots = 21.1 m/s
- Logged ferry bearing = 332 deg.

- ATSSG ferry speed = 21.9 m/s
- ATSSG bearing = 330 deg

(with revised pixel sizes of 2.46m)

VALIDATION

Compare:

ATSSG currents $\leftarrow \rightarrow$ HF radar currents

yellow ATSSG blue HF

ATSSG-derived internal wave speeds (provisional)

internal waves on 13 Aug 2006 generally rather slow → moribund?

SENSING DEPTHS

- ATSSG \rightarrow surface
- NJRC HF radar \rightarrow 0.97 m
- CODAR HF radar \rightarrow 1.72 m
- ADCP current meter \rightarrow 12.8 m

METHOD USED TO DERIVE STOKES DRIFT (downwind direction)

- Remove underlying tidal and geostrophic components using ADCP data at 12.8 m.
- Subtract along-wind contribution from "Quasi-Eulerian" response using estimate based on Ardhuin et al. (2009)
- Assume Q.E. term ~uniform in upper 2m

Using Ardhuin's data (stratified, low wind case)

• For a wind of 2.8 m/s (13 Aug 2006)

→downwind QE component ~ 0.01 m/s (small!)

In fact: we assume a downwind QE component of ~0.015 m/s for shallower r.s. depths (+higher stratification in Tsushima)

SURFACE STOKES DRIFT (SSD) ESTIMATE

downwind direction SSD ~ ATSSG_{down} – ADCP_{12.9m} – QE term_{down}

(\rightarrow can do the same in the crosswind direction, using QE crosswind estimate of 0.022 m/s)

	CURRENT MEASUREMENTS AT ADCP LOCATION					
			SUBTRACT QE TERMS FROM		CODAR UPWARD	S
			ALSO SUBTRACT UNDERLYIN		IG FLOW AT 12.79m	
				RESI		
	MEASURED CURRENTS	downwind	crosswind	downwind	crosswind	
depth		m/s	m/s	m/s	m/s	
0	ATSSG data (2.5m res)	0.516279978	0.287765503	0.1547971	0.165517894	
-0.97	NJRC	0.477932894	0.131855645	0.11645	0.009608037	
-1.72	CODAR*	0.39855754	0.193896078	0.0370746	0.07164847	
-12.79	ADCP 12.79m	0.346482925	0.100247608	0	0	
					postv right	
	*CODAR correctn = -0.15 norwd		uniform QE	downwind	crosswind	
	for 4 radials		in top 2m	0.015	0.022	
	wind dirn	wind speed				
	wrt E 27.74 degrees	2.8 m/s				

STOKES DRIFT ESTIMATES

RESULTS FROM THE 13 AUGUST 2006 STUDY

- Calibration + Validation of ATSSG surface currents
 → new derivation of shear in uppermost layer
 → first Stokes Drift vertical profile
- Demonstration of abundant IWs in T.S.
- Discovery of "front"-like features in mid-channel T. S.
- Identification of a small coastal front at Ikishima

"Front" and Internal Waves near Pusan \rightarrow Hakata jetfoil

Gravity Wave Refraction at mid-channel "frontal" Boundary

Tsushima Internal Waves: Questions

- Where are the waves generated?
- How much energy do they transfer?
- How much mixing do they produce?
- What is the relation waves $\leftarrow \rightarrow$ "front"?
- Relation to the Tsushima surface spiral-gyre?
- Influence of IWs and gravity wave field change at "front" on ATSSG and HF radar surface currents?

Measurement of Internal Wave Speeds by the ATSSG technique

- ATSSG delivers total IW speed
 i.e. total speed = phase speed + "tidal" advection
- For 13 Aug 2006 IW phase speeds generally little different from surface slick speeds

