Observations of the March 11, 2011 Japan Tsunami Using HF Radars on Two Continents

Tsunamis & HF Radar

Steven R. Ramp SOLITON Ocean Services, Inc. Don Barrick and Belinda Lipa CODAR Ocean Sensors Ltd.

Additional Co-Authors

Sei-Ichi Saitoh

- Faculty of Fisheries Science, Hokkaido U.

- Yoichi Ishikawa, Toshiyuki Awaji
 - Laboratory of Physical Oceanography, Kyoto U.
- John Largier
 - Bodega Marine Lab, U. of California at Davis
- Newell (Toby) Garfield

Romberg Tiburon Center, San Francisco State U.

Talk Outline

Basic Principles

- Evolution of Incoming Waves
- Height vs. Velocity
- Detection Methods
 - Vector Current Maps
 - Radials From a Single Radar
 - Directly From the Bragg Spectrum
- Examples from Japan and America
- Issues Determining Warning Time

Basic Principles

- Tsunamis are shallow water waves
- Signals are small in deep water, fast moving
- Currents increase faster than height for a wave entering shallow water

$$h_s(d) \propto h d^{-1/4}$$

 $v_p(d) \propto h d^{-3/4}$

HF radars sense surface currents

Detection Methods

1. Direct observation of surface current vectors from two coastal HF radars

- Use equations of motion to calculate height
- 2. Radial velocity from a single radar
 - Refraction drives wave to be perpendicular to the local depth contours
 - Radials resolved perpendicular to the local depth contours will see the wave

3. Directly from the Bragg backscatter spectrum

- Frequency shifts
- Peak width

Modeled Example of Solitary Wave Feature Propagating Across Constant-Depth Bottom

Animation: Tsunami Wave in Deep Water Depth = 4000 m

Example: Propagation on New Jersey Shelf

Animation: Tsunami ELEVATION across NJ Shelf

decreases
Height increases as inverse 1/4 power of depth

Feature speed

Shape compresses as depth decreases so temporal nature remains intact

Animation: Orbital VELOCITY Across NJ Shelf

The March 11 Tohoku-Oki Earthquake Event

Introduction to the Movies

Vectors = Observed Surface Currents

Color = Height calculated from currents

Time between images = 20 minutes Red = high; Blue = Low

$h(d) = \sqrt{\frac{d}{g}} v_o(d)$

Tides removed

3:57 – MOVING THROUGH

4:01 – CREST & TROUGH

4:10 - TROUGH REMAINS

4:15 – TROUGH LASTS LONGER THAN CREST

4:19 – TROUGH WEAKENS

4:27 – NEXT CREST ARRIVES

Play the Movie!!

Tsunami Observations on Hokkaido, Japan

Fluctuations from Kinaoshi radials

Trinidad River Location (5 MHz)

Tsunami Observations on U.S. West Coast

- Tsunami seen by single radar at Trinidad River: <u>4.5 MHz</u>
 - Method #2: Onshore flow resolved in bands parallel to bathymetry
 - Time series not detrended

Bodega Bay Location (13 MHz)

Tsunami Observations on U.S. West Coast

- Tsunami seen by single radar at Bodega Marine Lab: <u>13 MHz</u>
 - Method #2: Onshore flow resolved in bands parallel to bathymetry
 - Time series not detrended

Commonweal Location (13 MHz)

Tsunami Currents and Sea Level off Commonweal, California

Tsunami Observations on U.S. West Coast

- Tsunami seen by single radar at Commonweal: <u>13 MHz</u>
 - <u>Method #3</u>: Shift of Bragg peaks for three Rx antennas
 - Method #3: Width of Bragg peaks for three Rx antennas

Time series are detrended

Warning Issues

- Bathymetry most important by far!
 - Narrow shelf = little warning time
 - Broad shelf = longer warning time
- Ambient conditions /background currents
 - Ability to distinguish tsunami from the rest of the currents via magnitude and coherence
 - Automatic pattern recognition
- Temporal resolution
 - Tradeoff between accuracy and averaging time
- Radar frequency & spatial resolution
 - Not very important

Available Observation Time? *It All Depends on Shelf Depth*

Shallow Extended Shelf: <u>2 Hours</u>

Narrow Shelf: <u>< 20 Minutes</u>

SeaSonde Radial Vector Map – Typical Background

New Jersey, USA

Tsunami Heights & Orbital Velocities At Various Depths

4000 m		1000 m		500 m		200 m	
Height (cm)	Orbital Velocity (cm/s)	Height (cm)	Orbital Velocity (cm/s)	Height (cm)	Orbital Velocity (cm/s)	Height (cm)	Orbital Velocity (cm/s)
10	0.5	14	1.4	17	2.4	36	7.9
20	1.0	28	2.8	34	4.7	71	15.7
50	2.5	71	7.0	84	11.8	178	39.4
100	4.9	141	14.0	168	23.5	356	78.7

Detection Possible

Detection Most Likely

SUMMARY

- Coastal HF radars can easily detect surface velocities due to a tsunami wave
- Even a single radar is valuable sensing radial velocities
- Allows post-analysis of how the wave propagated into the impacted region
- Allows 3-D verification of numerical models
- Warning time depends primarily on the bottom topography, i.e. shelf width

Extra Slides for Questions

Developing a Space-Time Pattern Recognition System Based on Bathymetry/Hydrodynamics

• Navier-Stokes Hydrodynamic Model for Horizontal Surface Velocity [Lipa, B.J., D.E. Barrick, J. Bourg, B.B. Nyden. (2006), "HF Radar Detection of Tsunamis", *J. Oceanog.*, vol. 62, pp. 705-716]

[Many NOAA publications by Titov, Gonzalez, Mofjeld]

• Full 2-D Time-Dependent Shallow-Water Hyperbolic PDE Wave Equation

$$\nabla \nabla \cdot \left[d(x,y) \,\overline{V}(x,y,t) \right] - \frac{\partial^2 \overline{V}(x,y,t)}{g \partial t^2} = \overline{0}$$

Green's function approach – delta-function time source at outer radar boundary

• Frequency Domain: Sinusoidal Frequency Analysis, Elliptic PDE

$$\nabla \nabla \cdot \left[d(x,y) \,\overline{V}(x,y,\omega) \right] + \frac{\omega^2}{g} \overline{V}(x,y,\omega) = \overline{0}$$

Eigenfunction approach – lowest bathymetry-based modes define velocity pattern

These 2nd-order PDEs are solved for single-site radar radial velocity patterns using MATLAB PDE Toolbox