# Classification of surface currents distribution maps

Yukiharu Hisaki University of the Ryukyus

#### Contents

- Background & Objectives
- Methods
- Data
- Results

EOF analysis *Cluster analysis* SOM analysis

Summary

Hisaki Y.: Classification of surface current maps, .Deep-Sea Res. (accepted).

#### Background

- Ocean data such as currents, temperatures and salinities are functions of time and space.
- One of the important analyses for ocean data is the classification of physical features according to contour or vector patterns in maps.

#### Ocean data classification







#### Methods of classification

- EOF (Empirical Orthogonal Functional) Analysis
- Cluster Analysis

hierarchical :Ward method non-hierarchical : K-means method

• SOM (Self Organization Map) Analysis

#### Non-hierarchical : K-means method



#### Non-hierarchical : K-means method



#### hierarchical :Ward method



#### dendrogram

## Data length must be short to draw.

### **Cluster Analysis**

- Not so often used in physical oceanography as metrology.
- Map classification:

data dimension:2 × No. of observation points (2-D current field) is high.

So called "Curse of dimensionality" 次元の呪い

#### Curse of dimensionality



S1:sphere with radius r S2:sphere with radius ar 0 < a < 1V1:volume of S1 V2:volume of S2  $\Delta V = V1 - V2$ N: dimension

#### Curse of dimensionality



Even though a (0<a<1) is close to 1, the difference between the distances OA and OB is large for large N.



#### Reduction of the dimension: EOF analysis

$$V_{(m)}(\mathbf{x},t) = \sum_{k=1}^{N_E} b_k(t) \Psi_{(m)}, \qquad m = 1,2$$

$$(V_{(1)},V_{(2)})$$
 reconstructed current  $\Psi_{(m)}=\Psi_{(m)}(\mathbf{x})$  eigenfunction

 $b_{k}(t)$  time coef. for EOF mode k  $N_{E}$   $_{\mathrm{No}}^{\mathrm{cut-off}\,\mathrm{EOF}\,\mathrm{mode}\,\mathrm{k}}$ 

#### Objectives

- Apply the classification methods (EOF, Cluster, SOM) to radar-derived currents, and compare the methods.
- Reduction of dimension by EOF and investigate the cut-off EOF mode number dependency.

## Method (SOM)

 Example: Consider to divide 3×4=12 groups (3×4SOM arrays).























#### EOF



#### EOF mode 1 -2



#### EOF mode 1 -2



#### hierarchical cluster analysis: Ward method



#### hierarchical cluster analysis: Ward method



#### Mean currents for each groups by the Ward method



#### Mean currents for each groups by the Ward method



clockwise eddy-like pattern in the HF radar observation area.

mixtures of the two typical patterns.

strong southward currents flow east of the HF radar observation area.

#### SOM pattern& BMU





#### SOM pattern(I)& Cluster(r)

























#### SOM pattern (I)& Cluster (r)



#### SOM pattern(I)& Cluster(r)

























#### SOM pattern(I)& Cluster(r)



In all of the SOM arrays, the currents near the coast are northeastward, while, currents by the cluster method are not.







#### Time series of group number



Group No: Numbered by the order of number of daily surface current maps in the group.

#### Time series of group number (SOM)

#### Cut-off EOF mode No dependency



#### Cut-off EOF mode No dependency

(a) SOM



### Summary

- The classification by SOM reveals the current patterns.
- 1. strong southward currents flow east of the HF radar observation area.
- 2. clockwise eddy-like pattern in the HF radar observation area.
- 3. mixtures of the two typical patterns.

#### Summary

- Ward method is similar to SOM.
- The K-means method cannot be applied to grouping without compressing the dimensions.
- The SOM is the most insensitive to the cut-off EOF mode number, while the K-means method is the most sensitive.

### The end

