

# 津波シミュレーションを用いた 海洋レーダによる伊勢湾での津波観測の検証

## ○渡久地 優<sup>1)</sup>,藤井 智史<sup>2)</sup>,日向 博文<sup>3)</sup>

- 1. 琉球大学大学院 理工学研究科
- 2. 琉球大学 工学部 電子情報通信コース
- 3. 愛媛大学大学院 理工学研究科



### 研究背景 これまでの海洋レーダ津波観測について

#### 海洋レーダを用いた津波の検知・観測



- 津波到来の検知: Lipa et al. (2011,2012); Hinata et al. (2011); Dzvonkovskaya et al. (2011)
- ・ 津波の面的(副振動)観測・モデル津波による比較: Benjamin et al., (2016)

   →視線方向流速成分のみ
- ・ 合成流速を用いた津波の面的(副振動)観測の検証:日向ら(2012), 渡久地ら(2016)
   ⇒副振動の定性的な比較のみ

視線方向流速を用いた津波・副振動観測の検証:○ 合成流速を用いた津波・副振動観測の検証:△



#### 研究背景の伊勢湾における津波挙動把握の重要性

南海トラフ巨大地震による伊勢湾における最大津波:4~7m(内閣府) 副振動による振動継続の可能性



津波防災のために:湾内における津波・副振動挙動の把握が必要。

目的

海洋レーダで得られた2011年東北津波の観測データ+津波シミュレーションをもとに、湾内での副振動の構造を明らかにする

今回の発表

観測データと津波シミュレーションの比較。副振動の励起について





#### <u>海洋レーダ:SeaSonde(CODAR)</u>

-愛知県鍋田(NABE),三重県津松坂(MATU) (国土交通省中部地方整備局名古屋港湾空港技術調査事務所によりデータ提供)

- 中心周波数: 24.515 MHz
- レーダ方式: FMICW
- 送信アンテナ: 垂直モノポールアンテナ
- 受信アンテナ: 垂直モノポール+クロスループアンテナ
- 距離分解能: 1.5 km
- 方位間隔: 5 deg.
- 解析時間分解能: 5分

アレイアンテナ型と比較して...

○アンテナの小型化○全方位同時観測×短時間観測では精度低

<u>沿岸潮位計</u>

- Nagoya, Onizaki, Toba: 1分間隔 - Yokkaichi: 10分間隔

(Nagoya, Toba:気象庁, Yokkaichi:四日市港管理組合, Onizaki:国土地理院によるデータ提供)

観測緒元



(合成流速算出の際は取得率50%以上の点を線形補間で解析に使用)

#### 津波シミュレーションの概要①

#### モデル: COMCOT (Cornell Multi-grid Coupled Tsunami Model) (Liu et al, 1998)

基礎方程式:線形/非線形浅水方程式(極座標系) 計算方法:Staggered格子を用いたLeap-frog法 計算時間刻み:1sec 出力時間刻み:1min 断層モデル:藤井・佐竹ver.8 初期水位:Okada(1985)の方法 境界条件:完全反射(陸側)、放射(沖側)

基礎方程式:線形/<u>非線形</u>の浅水方程式(極座標系) <del>連続の式</del>  $\frac{\partial \eta}{\partial t} + \frac{1}{R\cos\varphi} \left\{ \frac{\partial M}{\partial \psi} + \frac{\partial}{\partial \varphi} (N\cos\varphi) \right\} = 0$ 

$$\frac{\partial M}{\partial t} + \frac{1}{R\cos\varphi} \frac{\partial}{\partial\psi} \left\{ \frac{M^2}{D} \right\} + \frac{1}{R} \frac{\partial}{\partial\varphi} \left\{ \frac{MN}{D} \right\} + \frac{gD}{R\cos\varphi} \frac{\partial\eta}{\partial\psi} - fN + F_x = 0$$
$$\frac{\partial N}{\partial t} + \frac{1}{R\cos\varphi} \frac{\partial}{\partial\psi} \left\{ \frac{NM^2}{D} \right\} + \frac{1}{R} \frac{\partial}{\partial\varphi} \left\{ \frac{N^2}{D} \right\} + \frac{gD}{R} \frac{\partial\eta}{\partial\varphi} + fM + F_y = 0$$

$$f = \Omega \sin \varphi \qquad F_x = \frac{gn^2}{D^{7/3}} M (M^2 + N^2)^{1/2} \qquad F_y = \frac{gn^2}{D^{7/3}} N (M^2 + N^2)^{1/2}$$

$$\eta$$
:水位  
 $g$ :重力加速度  
 $M$ :X(W-E)方向の流量フラックス  
 $N$ :Y(S-N)方向の流量フラックス  
 $n$ :マニングの係数  
 $\varphi$ :経度  
 $\psi$ :緯度  
 $D$ :全水深  
 $R$ :地球の半径  
 $f$ :コリオリ係数  
 $n$ :マニングの粗度係数  
 $F_x$ :X方向の摩擦  
 $F_y$ :Y方向の摩擦



#### 津波シミュレーションの概要②



計算結果① GPS波浪計



沖合ではおおまかに津波挙動を再現



#### 計算結果② 沿岸波高・流速



振幅が大きい4~5波まで(地震発生から8~9時間)は観測値とモデルが非常に良い一致 それ以降はモデルで過小評価(⇒今後は防潮堤の考慮などが課題)

▶今回は良く再現できていた最初の9時間(~23:46)の現象を対象に解析







#### 計算結果② 沿岸波高・流速(最大波高~9h)



11



#### 計算結果② 沿岸波高(スペクトル)





▶30-40分、60-90分周期のスペクトルが卓越

\*Yokkaichiを除いてサンプリング周期1分



#### 計算結果③振動モード(60-90min)



▶海洋レーダで再現可能



#### 計算結果③振動モード(30-40min)



▶この周期のモードは海洋レーダで再現不可 観測領域内に卓越した流速場が存在しないため?

#### 計算結果④時間距離特性



(上:モデル流速)

伝搬〜増幅を検証

15

o Velocity

15

-15

-30

下: 観測流速(~240min))

0 Velocity



#### エネルギーフラックス





- 湾口⇒津松阪方向⇒湾奥/湾口の経路でエネルギーの輸送が行われている
- 湾口ではエネルギーフラックスが一定の周期で振動:副振動の発生
- 湾奥ではエネルギーの反射があまりない:副振動が発達しない



#### まとめと今後の方針

- 津波シミュレーションと海洋レーダ観測との比較
   再現性の高い津波発生9時間までを対象
   海洋レーダ視線方向流速(平均化)が良い一致
- 伊勢湾内副振動モード
  - ▶ 60-90分周期振動モードは海洋レーダ観測で再現可能
  - 30-40分周期振動モードは再現不可(観測領域に卓越した流速が存在しなかったため?)
- 副振動(60-90分)の励起について
  - 湾口付近では素早く励起。湾奥では反射波が少ないため励起しずらい ことを観測とシミュレーションから確認
  - 今後の予定:摩擦によるエネルギー減衰・湾外へのエネルギーの散逸 等を考慮して副振動の減衰過程を明らかにする
- 大湊局レーダ・三河湾VHFレーダを含めた解析