垂直・水平偏波を用いた偏波海洋レーダによる 実験結果報告

小泉 達寬¹山田 寛喜¹藤井 智史² 長名 保範²宇野 亨³ 新潟大学大学院 自然科学研究科¹ 琉球大学工学部² 東京農工大学工学部³

2020/12/15

研究目的

- 研究目的

海洋レーダの高機能化の実現

波浪情報だけでなく,船舶・飛行機など,他の情報の観測

分解能の改善にはアンテナ素子数増加・アレー開ロ長の拡大が必要

用地の確保が困難 高コスト

本発表

▶ 海洋レーダにおける垂直偏波と水平偏波の解析結果の違い
▶ 偏波解析を用いたデータ解析結果

垂直·水平両偏波観測可能

2020年1月下旬観測開始

海洋レーダ at 新潟大学工学部棟屋上

海に近く、波浪情報の観測が可能

大型船も付近を多く航行

航空機が頻繁に往来

© Marine Traffic

船舶情報

新潟空港

Niigata

航空機情報

© Flightradar24

 \checkmark

外観

素子配置

2

実験諸元

海象情報

航空機

Nivata 新潟市

© Marine Traffic

船舶

TOKIWA MARU [JP] 16.2 knots / 107° Position received: 1 minute ago

Destination: JP KIJ/WB

ULA : Uniform Linear Array

アレーキャリブレーション使用データ諸元

観測日時, 場所	8月28日14時14分 新潟大学工学部棟
アレー形状	ULA
素子数	8(垂直:4水平:4)
中心周波数	24.515 MHz
素子間隔	6.3 m (約0.52λ)
掃引周波数	100 kHz
掃引時間	0.5 sec.
総掃引回数	1152
距離分解能	1.3 km
観測時間	10 min.

送信素子

±30°方向にビームを向けたときのターゲットの反応が明瞭であり, ターゲット反応の角度にずれがあることを確認

解析結果(2/10) _{垂直偏波(with cal)}

0°方向にビームを向けたときのターゲットの反応が明瞭であることを確認

観測日時,場所	8月28日16時3分 新潟大学工学部棟
アレー形状	ULA
素子数	8(垂直:4 水平:4)
中心周波数	24.515 MHz
素子間隔	6.3 m (約0.52λ)
掃引周波数	100 kHz
掃引時間	0.5 sec.
総掃引回数	1152
距離分解能	1.3 km
観測時間	10 min.

海象情報

航空機

±30°方向にビームを向けたときのターゲットの反応が明瞭であり, ターゲット反応の角度にずれがあることを確認

0°方向にビームを向けたときのターゲットの反応が明瞭であることを確認

-30

-40

-50 [gp] d

-70

80

0.6 0.8

0°方向にビームを向けたときのターゲットの反応が微小であり, ターゲット反応の角度にずれがあることを確認

0°方向にビームを向けたときのターゲットの反応が 明瞭であるとともに,航空機の反応も確認 -40

-50 [ftp] d

-70

-80

0.8

偏波解析

解析結果(1/3) ビーム:0°

マルチルックサイズ:10×10

解析結果(2/3)

実験データ 2020-0828-1414

マルチルックサイズ:10×10

波,船舶,航空機ともに高い偏波度を示していることを確認

解析結果(3/3)

マルチルックサイズ: 10 × 10

波,船舶,航空機ともに高い偏波度を示していることを確認

その他解析手法

両偏波の解析結果から得られた特徴に着目

垂直偏波:航空機の反応は弱く,波,船舶の反応が強い

水平偏波:波,船舶の反応は弱く,航空機の反応が強い

解析結果(1/4)

マルチルックサイズ:10×10

波,船舶の反応と航空機の反応を色で識別できたことを確認

解析結果(2/4)

波,船舶の反応と航空機の反応を色で識別できたことを確認

0.8

0.6

0.4

0.2

解析結果(3/4)

航空機の反応を色で協調できたことを確認

解析結果(4/4)

マルチルックサイズ:10×10

航空機の反応を色で協調できたことを確認

発表内容 両偏波の解析結果の違いについての考察 \triangleright 各偏波の特徴に応じた 解析が期待される ▶ 様々な偏波解析手法を用いた解析結果 50 -30 Relation 40 -40 4(Range [km] 05 05 Range [km] 05 05 -50 [gp] d 60 10 10 -70 -0.8 -0.6 -0.4 0.6 -0.2 0.2 -0.8 -0.6 0.2 0.4 0.8 -1 -0.4 0 0.4 0.6 0.8-1 解析結果 Doppler [Hz] Doppler [Hz]

今後の検討

- ▶ より多くの実験データ取得
- ▶ 引き続き偏波解析