R4.11.30 海洋レーダ研究集会2022

海洋レーダにおけるレンジ及びドップラウォーク補償を用いた 航空目標検出性能向上に関する検討

[1] [1] [2] [2] [3]
 松田暁山田寛喜藤井智史長名保範宇野亨
 ^[1]新潟大学大学院自然科学研究科
 ^[2]琉球大学工学部
 ^[3]東京農工大学大学院工学研究院

目次

1. 研究背景

2. 研究目的

3. レンジ及びドップラウォーク

- 4. 実計測結果4. 1 計測方法4. 2 計測・解析結果(実計測)
- 5. シミュレーション結果
- 5.1 シミュレーション方法
- 5.2 計測・解析結果(シミュレーション)

6. まとめ

1. 研究背景

海洋観測のための研究

〇海象計やGPS波高計を用いて,自然環境の変化に伴う災害に対応するため,観測が行われているが,点計測であるため,海域の情報を空間で把握することは困難である.

〇海洋レーダは海域を空間で把握することできる利点から,海域観測を行う研究に利用されている. [1] 土木学会海岸工学委員会編,陸上設置型レーダによる沿岸海洋観測,土木学会、2001年

目標探知用レーダとしての研究

〇地表波及び電離層反射波を利用した見通し外領域の移動目標の検出

[2]Giuseppe Aureliano Fabrizio," High Frequency Over-the-Horizon Radar: Fundamental Principles, Signal Processing, and Practical Applications" Chapter4 Conventional Processing 2013

○既存の海洋レーダを用いた移動目標の検出に関する研究

[3] 宇野亨,山田寛喜,藤井智史,赤井秀樹"既存海洋レーダを用いた航空機検知の調査検討"海洋レーダ研究集会2015

○海洋レーダは、広い海域を観測しつつ、航空機等の移動目標を検出できるマルチユース化が期待できる、しかしながら、海洋レーダは波長が長い周波数を利用しているため、アンテナ利得が低い、そのため、移動目標に対して所望の探知性能を得るためには、長時間の積分が必要となる。その結果、生じるレンジ及びドップラウォークにより、移動目標の探知性能が低下する。

〇海洋レーダは、広い海域を観測しつつ、航空機等の移動目標を検出できる マルチュース化が期待できる。しかしながら、海洋レーダは波長が長い周波 数を利用しているため、アンテナ利得が低い、そのため、移動目標に対して所 望の探知性能を得るためには、長時間の積分が必要となる、その結果、生じ るレンジ及びドップラウォークにより、移動目標の探知性能が低下する

〇海洋レーダヘレンジ及びドップラウォーク補償を適用することで移動目標の 探知性能を向上する.

3. レンジ及びドップラウォーク

スロウタイム方向に フーリエ変換

OR-D(レンジ・ドップラ)マップ

R-D(レンジ・ドップラ)マップ 4/26

3. レンジ及びドップラウォーク(補償)

$$S_{b}(t,u) = C \exp\left[j2\pi(f_{0} + Mt)(\tau_{0} + \frac{2v_{r}}{c}u)\right]$$

= $C \exp[j2\pi(f_{0} + Mt)\tau_{0}] \exp\left[j2\pi(f_{0} + Mt)\frac{2v_{r}}{c}u\right]$
= $C \exp[j2\pi(f_{0} + Mt)\tau_{0}] \exp\left[j\frac{4\pi}{c}(f_{0} + Mt)(v_{0}u + \frac{\alpha}{2}u^{2})\right]$

○受信信号(ビート信号)に対してΔψの位相を乗算することで、レンジ及びドップ ラウォークを補償する.

$$\Delta \psi = \exp\left[-j\frac{4\pi}{c}(f_0 + Mt)(v_r u + \frac{\alpha}{2}u^2)\right]$$

 S_b :ビート信号, C = AA', A:振幅, A':電波伝搬等の減衰を考慮した振幅, f_0 :中心周波数 M:チャープ率, c:光速, v_r :目標速度, u:スロータイム方向の時間, τ_0 :1チャープ目の目標の遅延時間

4.1 計測方法

新潟大学工学部棟屋上に海洋レーダを設置

・海に近く、波浪情報の観測が可能
 ・航空機が頻繁に往来

4.1 計測方法

実験諸元

ULA : Uniform Linear Array

観測日時, 場所	2021年10月29日20時02分 新潟大学工学部棟
アレー形状	ULA
受信素子数	4
中心周波数	24.515 MHz
素子間隔	6.3 m (約0.52λ)
掃引周波数	100 kHz
掃引時間	0.5 sec.
総掃引回数	1152(解析:200)
観測時間	約10 min.(解析: 100sec.)

送信素子

受信素子

・送信エレメントを45°傾けた直線偏波送信

・垂直4素子,水平4素子の同時偏波 8chで観 測可能

4.2 計測·解析結果(実計測)

•Range-Doppler Map(従来法)

---距離約130[km]~144[km], 速度約-6.1~-5.0[m/s]及び2.1~6.1[m/s]に航空目標 の信号が確認できる.

Range-Doppler Map(レンジ及びドップラウォーク補償あり)

 —レンジ及びドップラウォーク補償を適用することで、レンジ及びドップラウォークを
抑えることができる。

8/26

4.2 計測・解析結果(SINRの計算方法)

SINR=(S/(I+N))の計算方法

4.2 計測·解析結果(実計測)

・従来法及び補償ありの場合における航空目標のSINRを比較

4.2計測·解析結果(実計測) - SINRの比較

・Range-Doppler Map(レンジウォーク補償あり) —レンジ及びドップラウォーク補償を適用することによって, SINRが5.4[dB]改善し たことが確認できる.

5.1 シミュレーション方法

5.1 シミュレーション方法

5.1 シミュレーション方法

$$\begin{split} \tau_{m} &= \frac{2}{c} \{ [R_{0} \cos \theta_{0} \cos \varphi_{0} + v_{0} \cos \theta_{1} \cos \varphi_{1} (m-1) \Delta u]^{2} \\ & \mathbf{p} \\ \pi \\ &+ [R_{0} \cos \theta_{0} \sin \varphi_{0} + v_{0} \cos \theta_{1} \sin \varphi_{1} (m-1) \Delta u]^{2} \\ & \mathbf{p} \\ &+ [R_{0} \sin \theta_{0} + v_{0} \sin \theta_{1} (m-1) \Delta u]^{2} \}^{0.5} \\ &+ [R_{0} \sin \theta_{0} + v_{0} \sin \theta_{1} (m-1) \Delta u]^{2} \}^{0.5} \\ & \mathbf{R}_{0} \\ &= \left(R_{x_{0}}^{2} + R_{y_{0}}^{2} + R_{z_{0}}^{2} \right)^{0.5} \\ & \mathbf{ADS} \\ & \mathbf{B} \\ \mathbf{F} \\ & \mathbf{S}_{b} \\ &= \mathcal{C} \exp[2\pi (f_{0} + Mt) \tau_{m}] \\ &+ n \end{split}$$

S_b:ビート信号, *C*= *AA*', *A*:振幅,*A*':電波伝搬等の減衰を考慮した振幅, M:チャープ率,
 C:光速, Δu:パルス送信間隔, *f_d*:ドップラ周波数, *R_{x0}*:東西方向の1チャープ目の目標位置,
 R_{y0}:南北方向の1チャープ目の目標位置, *R_{z0}*:高度方向の1チャープ目の位置,
 R₀:1chirp目の目標のスラントレンジ, Δu:掃引時間

5.1 シミュレーション方法

$$\tau_{m} = \frac{2}{c} \left\{ \frac{[R_{0}\cos\theta_{0}\cos\varphi_{0} + v_{0}\cos\theta_{1}\cos\varphi_{1}(m-1)\Delta u]^{2}}{\mathbf{g}_{\mathbf{g}_{\mathbf{g}_{\mathbf{f}_{\mathbf{f}}}}} + \frac{[R_{0}\cos\theta_{0}\sin\varphi_{0} + v_{0}\cos\theta_{1}\sin\varphi_{1}(m-1)\Delta u]^{2}}{\mathbf{g}_{\mathbf{f}_{\mathbf{f}_{\mathbf{f}}}}} \right\} \\ + \frac{[R_{0}\sin\theta_{0} + v_{0}\sin\theta_{1}(m-1)\Delta u]^{2}}{\mathbf{g}_{\mathbf{f}_{\mathbf{f}_{\mathbf{f}}}}} \\ + \frac{[R_{0}\sin\theta_{0} + v_{0}\sin\theta_{1}(m-1)\Delta u]^{2}}{\mathbf{g}_{\mathbf{f}_{\mathbf{f}_{\mathbf{f}}}}} \\ R_{0} = \left(\frac{R_{x_{0}}^{2}}{R_{x_{0}}} + \frac{R_{y_{0}}^{2}}{R_{z_{0}}} + \frac{R_{z_{0}}^{2}}{R_{z_{0}}}\right)^{0.5}}{\mathbf{h}_{\mathbf{f}_{\mathbf{f}_{\mathbf{f}}}}} \\ S_{b} = C \exp[2\pi(f_{0} + Mt)\tau_{m}] + n \\ : \vec{c} - h (\vec{e}, C = AA', A : Km, A' : The context is a context is$$

 R_{y_0} :南北方向の1チャープ目の目標位置, R_{z_0} :高度方向の1チャープ目の位置, R_0 :1chirp目の目標のスラントレンジ, Δu :掃引時間

5.1 シミュレーション方法

シミュレーション諸元			
目標 初期位置	東西方向	33.9 km	
	南北方向	117.2 km	
	高度	11.5 km	
目標初期速度	東西方向	135.5 m/s	
	南北方向	218.7 m/s	
	高度	0 m/s	
アレー形状	ULA		
受信素子数	4		
中心周波数	24.515 MHz		
素子間隔	6.3 m (約0.52λ)		
掃引周波数	100 kHz		
掃引時間	0.5 sec.		
総掃引回数	200		
観測時間	100 sec.		

○目標の進行方向が58.2°から61.0°に変化したため、 それを考慮して、チャープ毎に((61.0-58.2)/120)°変 動させてシミュレーションを実施した。

16/26

5.2 計測・解析結果(実計測及びシミュレーション)

シミュレーション結果 実計測結果 Velocity=0m/s Acceleration=0m/s² Velocity=0m/s Acceleration=0m/s² 180 180 160 160 140 140 -5 -5 Range [km] 08 00 09 00 Range [km] 00 80 00 60 -10 [**g**p] d -10 [¶] 60 60 -15 -15 40 40 20 20 -20 -20 6 5 -2 4 5 4 6 -6 -5 -4 -6 -5 Velocity [m/s] Velocity [m/s]

•Range-Doppler Map(実計測)

一距離約123[km]~147[km], 速度約-2.0~6.1[m/s]及び-6.1~-4.2[m/s]に航空 目標の信号が確認できる.

・Range-Doppler Map(シミュレーション)

一距離約123[km]~147[km], 速度約2.3~6.1[m/s]及び-6.1~-0.1[m/s]に航空 目標の信号が確認できる.

5.2 計測・解析結果(シミュレーション)

•Range-Doppler Map(従来法)

一距離約123[km]~140[km], 速度約-6.1~-1.8[m/s]及び4.0~6.1 [m/s]に航空 目標の信号が確認できる.

・Range-Doppler Map(レンジ及びドップラウォーク補償あり) ーレンジ及びドップラウォーク補償を適用することで,レンジ及びドップラウォー クを抑えることができる.

5.2 計測・解析結果(シミュレーション)

・従来法及びレンジ及びドップラウォーク補償ありの場合における航空目標の SINRを比較

5.2 計測・解析結果(シミュレーション)-SINRの比較

・Range-Doppler Map(レンジウォーク補償あり) —レンジ及びドップラウォーク補償を適用することによって, SINRが8.5[dB]改善し たことが確認できる. 5.1 シミュレーション方法(低RCS目標)

シミュレーション諸元			
目標初期位置	東西方向	33.9 km	
	南北方向	117.2 km	
	高度	11.5 km	
目標 初期速度 _	東西方向	135.5 m/s	
	南北方向	218.7 m/s	
	高度	0 m/s	
アレー形状	ULA		
受信素子数	4		
中心周波数	24.515 MHz		
素子間隔	6.3 m (約0.52λ)		
掃引周波数	100 kHz		
掃引時間	0.5 sec.		
総掃引回数	200		
観測時間	100 sec.		

$$s_b = C \cdot exp\{2\pi(f_0 + Mt)\tau_m\} + n$$

$C \propto \sqrt{\sigma}$

S_b:ビート信号, *C* = *AA*', *A*:振幅,*A*':電波伝搬等の減衰を 考慮した振幅, *M*:チャープ率, σ:RCS

21/26

5.2 計測・解析結果(シミュレーション:低RCS目標)

Range-Doppler Map:RCS=1/10, 1/20 ・従来法では検出できない低RCSの目標ついて, レンジ及びドップラーウォーク 補償を適用することによって距離約123[km],速度約3.5[m/s]に航空目標が検出 できることが確認できる.

5.2 計測・解析結果(シミュレーション:低RCS目標)

・従来法において, RCS=1/10及びRCS=1/20の航空目標のSINRの最大値を比較

5.2 計測・解析結果(シミュレーション:低RCS目標)

・レンジ及びドップラウォーク補償ありの場合において, RCS=1/10及びRCS=1/20の 航空目標を比較

・Range-Doppler Map(レンジウォーク補償あり) —レンジ及びドップラウォーク補償を適用することにより, SINRを改善することで,

低RCSの航空目標を検出することができることを確認できる.

〇海洋レーダにおいて、レンジ及びドップラウォーク補償を適用した実計測及 びシミュレーションにより、航空目標のレンジ及びドップラウォークを抑えるこ とができ、SINRが改善することを確認した.

Oレンジ及びドップラウォーク補償を適用することで、従来法では検出できない低RCSの航空目標を検出できることを確認した.

○今後の検討
 ・船舶目標に対するレンジ及びドップラウォーク補償の適用