

NICT 灘井章嗣

短波海洋レーダによる視線方向流速計測

短波帯電波を送信し、海面からの散乱波を受信

- ·位置情報:距離、方向
- ・散乱体の視線方向速度 ← Dopplerスペクトル

→海洋波浪全体の情報

視線方向流速計測精度

比較対象: 流速計 2m深 (短波海洋レーダ 0.5m深の流速を代表) 回帰分析: RMS誤差 4.2~7.3 cm/s 平均 5.7cm/s

短波海洋レーダによる流速ベクトル計測

clockwise from the north. The radial component v_{ri} of the current vector mea-

sured by the #i radar is described by using the unit vector

$$\mathbf{e}_i = \begin{pmatrix} \sin \theta_i \\ \\ \cos \theta_i \end{pmatrix},\tag{1}$$

as

$$v_{ri} = \mathbf{V} \mathbf{e}_i.$$
 (2)

The vector of the directional current component $\mathbf{V_r} = \begin{pmatrix} v_{r1} & v_{r2} \end{pmatrix}$ is expressed in terms of the matrix $\mathsf{R} = \begin{pmatrix} \mathbf{e_1} & \mathbf{e_2} \end{pmatrix}$ as

$$V_r = VR.$$
 (3)

When two radar beams are not parallel, the unit vectors \mathbf{e}_1 and \mathbf{e}_2 are unique and the inverse matrix R^{-1} can be defined. The current vector is then calculated as:

$$V = V_r R^{-1}$$
. (4)

流速ベクトルの計測精度

流速ベクトル計測精度

ビーム交差角により誤差ベクトルの分布形状が変化

• RMS誤差 10cm/s以下

比較対象: 流速計 2m深

遠距離海洋レーダ(与那国局・石垣局)

観測距離:

200km

遠距離海洋レーダの観測範囲

黒潮が東シナ海の 大陸棚に乗り上げ ている場合

一次散乱エコーの形状変化

2つのエコー間で形状に差がある

⇒ 成因は?

ー次散乱エコー形状と流速場

−次散乱エコーの幅が広がる領域と
 流速場変化の大きい領域(渦状構造)が一致
 →レーダ感度分布内での流速場変化と関係
 渦度場と発散場の分布が一致しない
 渦状構造の移流速度約0.7m/s

航空機搭載合成開口レーダで観測された渦

短波海洋レーダ: 渦と潮汐の関連を示唆
空間スケール 20km程度 移
流速度 0.8m/s (発生間隔25時間を仮定)
→ 短波海洋レーダ観測とほぼ一致
渦パターンから、発散は強くないと予想
→ 短波海洋レーダ観測と一致しない

<u>航空機搭載合成開口レーダで観測された渦</u>

131' 01' 28"E

空間スケール 20km程度 移 流速度 0.8m/s (発生間隔25時間を仮定) → 短波海洋レーダ観測とほぼ一致 渦パターンから、発散は強くないと予想 → 短波海洋レーダ観測と一致しない

Eddy (V_0 =0.125, φ =90deg. K_B=(0,1))

NRCS

Eddy (V_0 =0.125, ϕ =90deg. K_B=(0,1))

Doppler spectra with NRCS

Doppler spectra without NRCS

Eddy (V_0 =0.125, ϕ =90deg. K_B=(0,1))

Radial velocity

Measurement error vs. Strength of current phenomena

Measurement error of radial velocity by HFOSR increases with the intensity of current phenomena.

Comparison with the dimensional velocity

In simulation model,

the current velocity is normalized by the phase velocity of ocean waves causing the first-order echo.

Radar frequency [MHz]		5.00	9.00	13.00	25.00	42.00
Phase velocity of causal ocean waves [m/s]		6.84	5.10	4.24	3.06	2.36
Normalized velocity	0.05	0.34	0.25	0.21	0.15	0.12
	0.10	0.68	0.51	0.42	0.31	0.24
	0.13	0.86	0.64	0.53	0.38	0.30
	0.15	1.03	0.76	0.64	0.46	0.35
	0.20	1.37	1.02	0.85	0.61	0.47

Distance is normalized by the spatial scale of targeting ocean phenomena.

Radar sensitivity distribution is defined as Gaussian.

Eddy (V_0 =0.125, φ =90deg. K_B=(0, ±1))

Averaged radial velocity with two first-order echoes

Eddy (V_0 =0.125, φ =90deg. K_B =(0, ±1))

Current field (crossing angle: 90 deg) with averaged radial velocity

1D Velocity Front $U(y) = -U_0 \cos(\varphi) \qquad (y > 1)$ $-U_0 \cos(\varphi) \sin(\pi y/2) \quad (-1 \le y \le 1)$ $U_0 \cos(\varphi) \qquad (y < -1)$ $V(y) = -U_0 \sin(\varphi) \qquad (y > 1)$ $-U_0 \sin(\varphi) \sin(\pi y/2) \quad (-1 \le y \le 1)$ $U_0 \sin(\varphi) \qquad (y < -1)$ $U_0: \text{ Maximum velocity}$ $\varphi: \text{ Divergence/Shear parameter}$ $\varphi = 0^\circ : \text{Pure shear}$

- $\varphi = 90^{\circ}$: Divergence
- φ = -90° : Convergence
- ϑ_{T} : Angle between the velocity axis and the propagation direction of the causal ocean waves of the first-order echoes

Radar Cross Section ($U_0/Cp = 0.125, \varphi = 0^\circ$)

Radial Current ($U_0/Cp = 0.125, \varphi = 0^\circ$)

 $\Delta \sigma_{all}$ (dB)

Hirauchi Radar – Radial current velocity Extracted from k_B⁺ Extracted from k_B⁻

Kurio Radar – Radial current velocity

Extracted from k_{B}^{+}

Extracted from k_B⁻

Difference of Radial current velocities Hirauchi

Kurio

 $V(k_{\rm B}^{+}) - V(k_{\rm B}^{-}) < 0$

Agree with simulation results

Current field

Averaged radial current velocity

Non-averaged radial current velocity

