海洋レーダ送受信機の FPGA 向け ディジタルフィルタ実装と最適化

琉球大学大学院理工学研究科 熊本大学半導体・デジタル研究教育機構 琉球大学/ORNIS 株式会社 ORNIS 株式会社

・海洋レーダ網の全国展開

・全国をカバーするために

- ・13.5MHz のレーダが 210~230基必要
- ・低価格な海洋レーダの開発が必須
 - ・FPGA ボードを用いたディジタル実装

https://www.ornis.jp/technology

各レーダ局

- ・国内数カ所での観測
 - ・新潟や函館、静岡など

御前崎(静岡)観測レーダ

・以前運用していたボード

RFSoC 28DR (HitechGlobal ZRF-8)

・現在運用中のボード

ORNIS ボード (Kria K26)

ZCU102 と Kria K26 比較

FPGA ボード	Price	Device	LUT	BRAM	DSP
ZCU102	\$3,234	ZU9EG	274,080	912	2,520
Kria K26	\$325	ZU5EV	117,120	144	1,248

ZCU102

Kria K26

ディジタルフィルタ

Filter	長所	短所		
IIR (Infinit/ mpulse Response)	。 低次のフィルタで急峻な特性 が可能	 係数によって不安定 誤差が大きく現れる 直線位相特性が実現不可 		
FIR (Finite Impulse Response)	。 常に安定 。 直線位相特性が正確 。 誤差が大きく現れない	■ 急峻な特性の実現には高 のフィルタが必要		
(Cascaded Integrator	。 常に安定 。 低次のフィルタで狭帯域を 実現	■ 他のフィルタを併用する。 要がある		

FIR(Finite Impulse Response)

次数 = タップ数

・タップ数の増加

フィルタ特性が向上

■ 回路規模の増加

8

CIC (Cascaded Integrator Comb)

- 低いタップ数で狭帯域のフィルタを作成
 - ・回路規模を大きく削減可能
- フィルタ特性に問題
 - ・跳ね上がりがある
 - ・エイリアシングの発生
 - ・FIR フィルタなどと併用し抑制

エイリアシング

fs:出力サンプリングレート

- $f_s/2 f_s$
 - ・fs/2 を対象に折り返す
- fs 以上
 - OHz 付近に現れる
- ・これら全てが加算
 - ・赤色の成分として出力

従来(ZCU102)におけるフィルタ設計

フィルタ	f _s (Hz)	R	fı(Hz)	N	LUT	BRAM	DSP
1 (CIC)	250M	1,000 : 1		5	3,536	0	64
2(FIR)	250k	25:1	1,500	512	2,000	144	112
3(FIR)	10k	10:1	200	512	4,800	120	112

fs:サンプリング周波数 R:デシメーション比 f1:カットオフ周波数 N:タップ数

Kria K26 への実装

・従来のフィルタ設計のまま実装

・フィルタだけ

o LUT と DSP は余裕がある

■ BRAM が不足

CIC によるエイリアシング

- 1段目の CIC による影響
 - ・出力周波数の1/2を境として

エイリアシングの発生

・発生していない場合が橙色

Input Spectrum

CIC フィルタ特性

CIC

CIC filter frequency response

全体のフィルタ特性(ZCU102)

- ・フィルタ全体のフィルタ特性
 - 3段の周波数応答を掛け算
- 特性
 - ・阻止域までなだらか
 - ・ CIC の影響
- ・実際の観測においてのノイズ
 - エイリアシングの影響

filter frequency response

理想的なフィルタと設計方針

- ・理想的なフィルタ
 - 1. FPGA 変更後の回路規模に収まる 2. エイリアシングがない
- 設計方針
 - ・CIC フィルタを除去し、FIR のみの構成とする
 - エイリアシングをなくす

最終的なフィルタ構成

Stage	fs(Hz)	R	fı(Hz)	N	LUT	BRAM	DSP
]	250M	10:1	5M	128	19,028	0	496
2	25M	10:1	500k	128	6,600	32	112
3	2.5M	50:1	10k	500	8,327	33	112
4	50k	10:1	1,000	100	8,153	0	112
5	5k	5:1	80	1,000	6,404	33	112

fs:サンプリング周波数 R:デシメーション比 f1:カットオフ周波数 N:タップ数

FIRのエイリアシング

- ・従来との1段目の比較
 - ・折り返しがない
 - ・fs/2 より十分下で落ちている

CIC 通過後のスペクトル

全体のリソース使用量

全体の周波数特性

0 -200 H (dB) -400 -600 100 200 300 400 0 Frequency (Hz)

filter frequency response

FIR filter

まとめ

- 海洋レーダ全国展開に向けて
 - ・FPGA を用いたディジタル実装
 - ・使用する FPGA ボードを低価格なものに
- FPGA 変更において
 - ・デバイス規模縮小における回路規模最適化
 - ・フィルタ設計の変更

→ 回路規模を抑え、エイリアシングの発生を抑制