HFレーダ及びFVCOM を用いた 大阪湾の流況解析

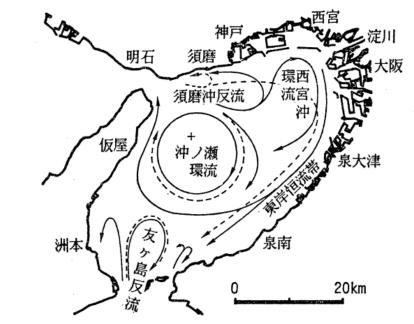
谷田裕 (神戸大学海事科学研究科 修士1年) 林美鶴 准教授(神戸大学内海域環境教育センター) 廣川綜一 技術員(神戸大学海事科学研究科)

目次

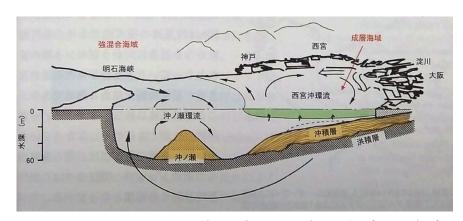
- 1. 研究背景 目的
- 2. 使用データ
- 3. 結果、考察
- 4. まとめと今後

研究背景 - 目的

背景


大阪湾の残差流分布

大阪湾での流況は定点や船舶 による観測が行われてきた。

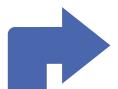

そこから右図のように表層・ 底層それぞれの残差流分布が 概念的に示された。

大阪湾の残差流は、

潮汐残差流、密度流、吹送流といった非周期性の成分が主な要因として存在する

出典:藤原ら(1989),大阪湾の恒流と潮流・渦

出典:瀬戸内海の気象と海象


目的

潮汐残差流、密度流、吹送流の重ね合わせが大阪湾の残差流場を作り出しているが、これらの要因である河川流量や日射量、風といった要素が季節によって変化するため、残差流場も季節ごとに変化すると考えられる。

大阪湾の残差流分布については月ごと、あるいは季節ごとの 違いに関して、残差流分布図として各月ごとには示されてい ない。

大阪湾における月ごとの立体的な残差流分布図を作成し、月あるいは季節ごとの違い を明らかにすることを目指す

研究全体の方針

・任意の月でFVCOMのシミュレーション実行

修正・変更

2

・1の結果をHFレーダー観測値、定点観測、 潮流推算との比較、精度検証

3

・大阪湾内の残差流分布を3次元的に再現

4

• 1~3を各月にて実行、月や季節別の残 差流分布モデルを作成

現在は1~2でFVCOMの潮流の再現性などについて検証を行っている

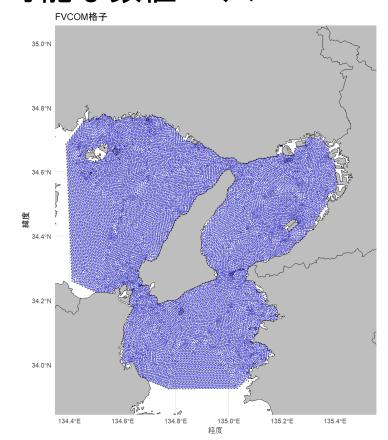
使用データ

FVCOM

概要

FVCOM:有限体積法による非構造格子の海洋数値モデル →より複雑な沿岸地形にも対応可能な数値モデル

沿岸域の潮流や水質の


シミュレーションに有用

水平:非構造格子

鉛直: z-σ混合座標系

計算範囲•格子:右図

今回は中田ら(2018)で用いられた大阪湾の数値モデルを使用

FVCOM

MSM

(海面境界条件 風向、風速、雨量)

DREAMS

(側面境界条件 水位、水温、塩分、 流向、流速)

CFSv2

(海面境界条件 熱フラックス) 水文水質 データベース ^{河川流データ}

FVCOM

結果出力

(流向、流速、水温、塩分etc.)

シミュレーション結果解析 潮流推算、HFレーダ、定点、船舶との比較

使用データ

FVCOM

計算期間:2015年度 1月1日~6月30日

使用期間:2015年度 6月1日~6月30日

入力情報: MSM、DREAMS

CFSv2、水文水質データベース

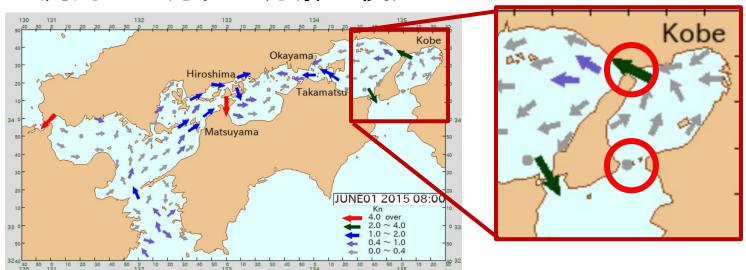
入力データは2015年度のデータかつ1時間値(水文水質DBのみ1日毎)

初期条件:水温塩分は今回定点データの1月の値を参考に、

水温11度、塩分31psuとした。

計算の時間ステップ: 1.0s(外部モード),10s(内部モード)

出力間隔:1時間

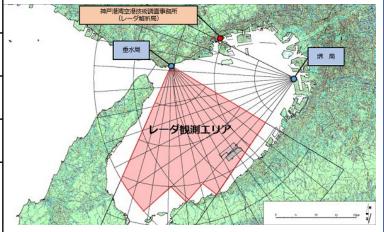

潮流推算データ

潮流推算データは海上保安庁海洋情報部より提供されている

使用期間:2015年6月1日~2015年6月15日

主に潮流の時間変化が見やすい明石海峡付近と紀淡海峡付近 の流向、流速値を利用(図の〇印の2点)

※流向は16方位に分解し使用

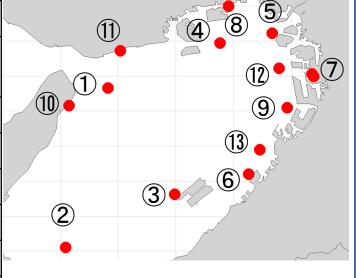

使用データ

肝レーダー

使用測定局:垂水局、堺局

測定範囲は図のエリア u、vを使用

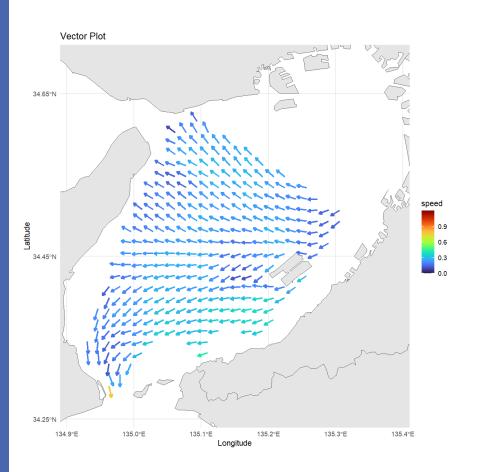
アンテナ形式	DBFアレイ方式
レーダ形式	FMICW方式
使用周波数带	24. 465~24. 565MHz
周波数掃引值	100kHz
レンジ方向距離分解 能	1500m
アジマス方向分解能	7.5度
実行計測距離	50km
測定方位範囲	アンテナ正面±45度

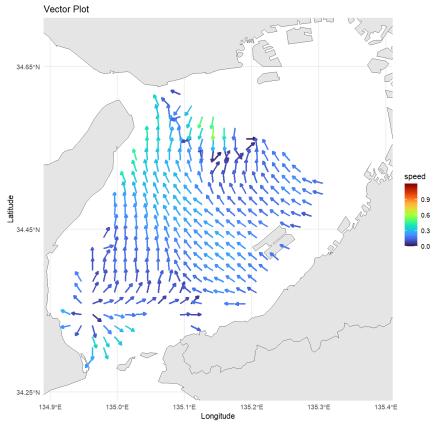


HF レーダーの観測領域 (出典:大阪湾環境データベース)

定点データ・船舶データ

	地点名	流向	流速	水温	塩分
1	明石海峡航路東方灯浮標			0	0
2				0	0
3	関空MT局	0	0	0	0
4		0	0	0	0
(5)	淀川河口	0	0	0	0
6	阪南沖窪地	0	0	0	0
7	堺 浜	0	0	0	0
8	神戸六甲アイランド東水 路中央第三号灯標			0	
9	浜寺航路第十号灯標			0	
10	淡路交流の翼港			0	0
11)	須磨海づり公園			0	0
12)		0	0	0	0
13)	岸和田沖	0	0	0	0
14	船舶観測	0	0	0	0

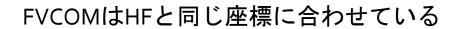

大阪湾の湾奥ではHF レーダーの範囲外であ るため、定点データを 用いた精度検証を行う

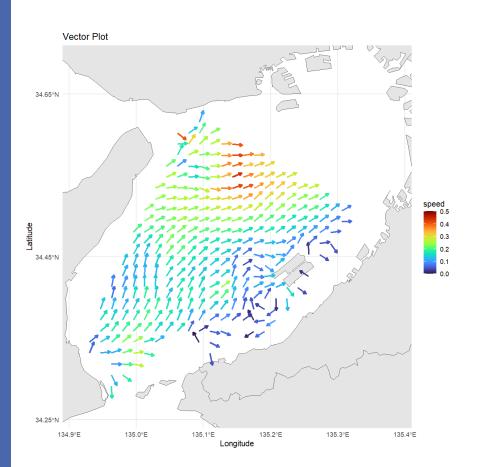


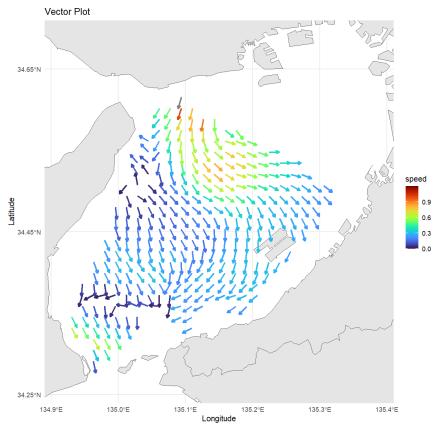
結果

FVCOM(左図) vs HF(右図)

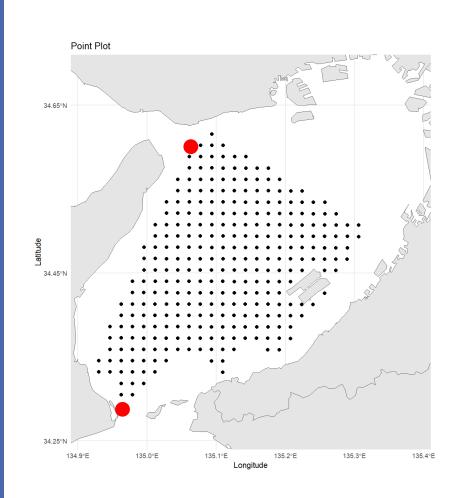
FVCOMはHFと同じ座標に合わせている




FVCOM vs HF


流況が異なる→・吹送流の影響

・密度流の再現性


・潮流の再現性

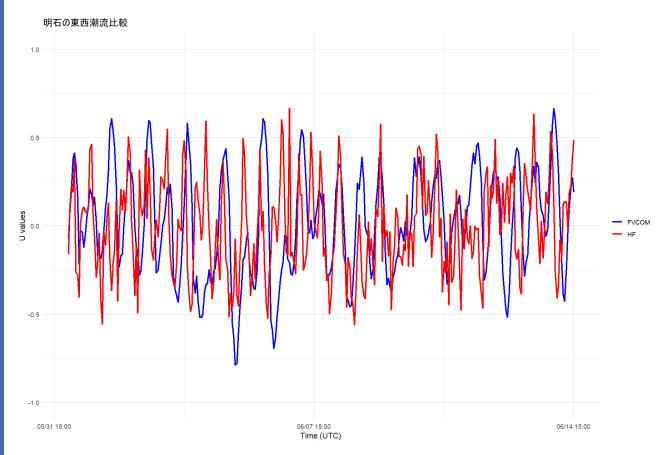
FVCOM vs HF

流況が異なる→・吹送流の影響

・密度流の再現性

- 潮流の再現性

潮流の影響が卓越する明石 海峡、紀淡海峡付近のデー タを比較

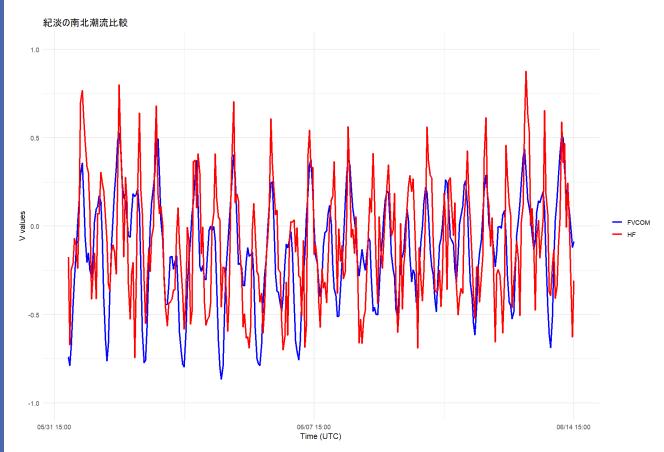

FVCOMはHFの座標に合わせて 近傍店3点を距離の重み付け をして同一座標にそろえて いる

FVCOM vs HF(明石、東西)

流況が異なる→・吹送流の影響

・密度流の再現性

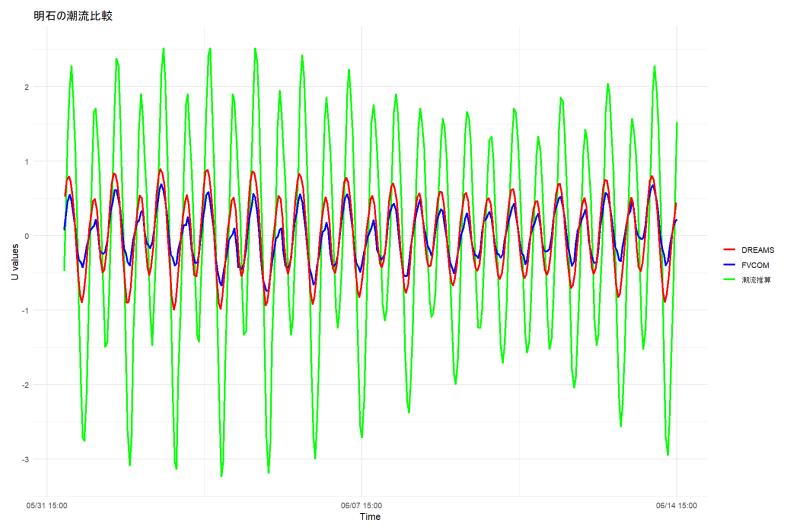
・潮流の再現性



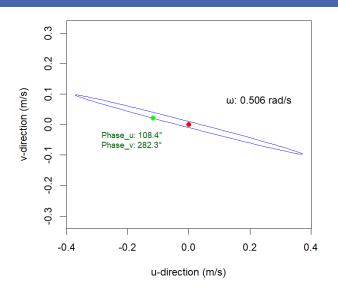
FVCOM vs HF(紀淡、南北)

流況が異なる→・吹送流の影響

・密度流の再現性

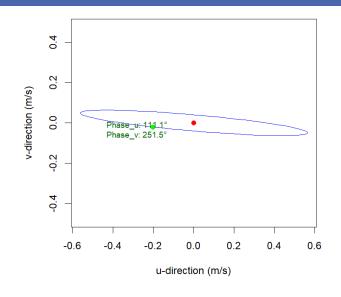

・潮流の再現性

HFとFVCOMの結果


- 面的な比較では流向、流速に大きな違いが見られた
- ・潮流の影響が卓越する明石海峡、紀淡海峡付近での時系列比 較では周期やピークの違いが見られた
- ・これらの違いはFVCOMの吹送流、密度流、潮流の再現性に起 因すると考えられる。
- →周期性を持つ成分である潮流の再現性を確認するため、FVCOMとDREAMSと潮流推算の周期性成分の調和解析を行った。

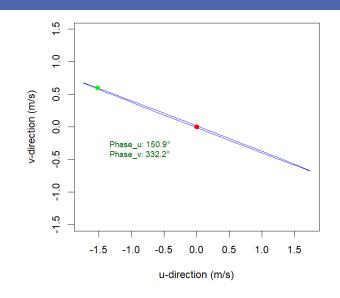
FVCOM vs DR vs 潮流推算

FVCOM vs DREAMS vs 潮流推算 (明石)


FVCOM(潮流)

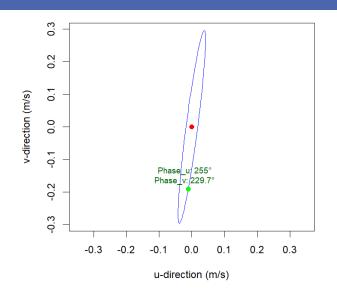
分潮	周波数 (/h)	東西振幅 (m/s)	南北振幅 (m/s)	東西位相 (度)	南北位相 (度)
M2	0. 0805	0. 37	0. 097	108	282
K1	0. 0417	0. 14	0. 057	185	0
S2	0. 0833	0. 10	0. 027	136	313
01	0. 0387	0. 07	0. 037	180	347

FVCOM vs DREAMS vs 潮流推算 (明石)


DREAMS

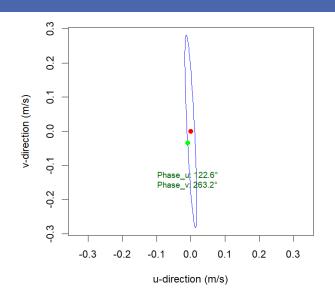
分潮	周波数 (/h)	東西振幅 (m/s)	南北振幅 (m/s)	東西位相 (度)	南北位相 (度)
M2	0. 0805	0. 56	0. 063	111	251
K1	0. 0417	0. 22	0. 014	187	338
S2	0. 0833	0. 15	0. 015	141	282
01	0. 0387	0. 13	0. 008	188	348

FVCOM vs DREAMS vs 潮流推算 (明石)


潮流推算

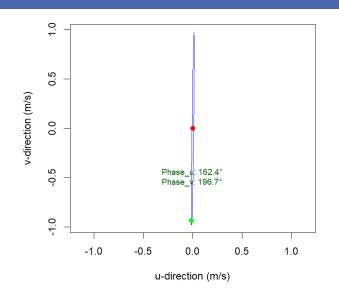
分潮	周波数 (/h)	東西振幅 (m/s)	南北振幅 (m/s)	東西位相 (度)	南北位相 (度)
M2	0. 0805	1. 74	0. 67	150	332
K1	0. 0417	0. 59	0. 32	188	2
S2	0. 0833	0. 47	0. 19	166	346
01	0. 0387	0. 27	0. 16	168	336

FVCOM vs DREAMS vs 潮流推算 (紀淡)


FVCOM(潮流)

分潮	周波数 (/h)	東西振幅 (m/s)	南北振幅 (m/s)	東西位相 (度)	南北位相 (度)
M2	0. 0805	0. 042	0. 30	254	230
K1	0. 0417	0. 036	0. 17	8	334
01	0. 0833	0. 017	0. 10	12	331
S2	0. 0387	0. 012	0. 09	256	248

FVCOM vs DREAMS vs 潮流推算 (紀淡)


DREAMS

分潮	周波数 (/h)	東西振幅 (m/s)	南北振幅 (m/s)	東西位相(度)	南北位相 (度)
M2	0. 0805	0. 017	0. 28	122	263
K1	0. 0417	0. 005	0. 13	129	356
S2	0. 0833	0. 003	0. 077	150	293
01	0. 0387	0. 004	0. 074	128	357

FVCOM vs DREAMS vs 潮流推算 (紀淡)

潮流推算

分潮	周波数 (/h)	東西振幅 (m/s)	南北振幅 (m/s)	東西位相 (度)	南北位相 (度)
M2	0. 0805	0. 014	0. 98	162	197
K1	0. 0417	0. 057	0. 42	294	137
01	0. 0833	0. 063	0. 25	221	119
S2	0. 0387	0. 059	0. 21	214	212

FVCOM vs DREAMS vs 潮流推算 (明石)

調和解析結果

FVCOMは潮流推算と卓越した周期成分が明石海峡と紀淡海 況にて一致した。

周期成分のうちM2が最も卓越し、FVCOMと位相差はいずれも2時間程度であった。

まとめ

まとめ

- FVCOMのシミュレーション結果は、HFと異なっており、潮流、密度流、吹送流のいずれかの再現性に問題があった可能性がある
- 潮流推算とDREAMS、FVCOMの調和解析の比較結果から,いずれもM2、K1が卓越し、次いでS2、01が卓越していた
- 最も卓越したM2とK1ではFVCOMと潮流推算との間での位相 のずれに違いがあったため、これらの違いの原因を調査し、 FVCOMの条件設定の見直しを行う必要があると考えられる。

今後

潮流の再現性の確認密度流、吹送流の再現性確認

補足資料

補足資料

FVCOM vs DREAMS vs 潮流推算 (明石)

調和解析結果(パワースペクトル密度による寄与率)

	明石			紀淡		
寄与率 (%)	FVCOM (潮流)	DREAMS	潮流推算	FVCOM (潮流)	DREAMS	潮流推算
M2	74. 8	72. 6	78. 6	60. 3	71. 1	69. 9
K1	12. 0	12. 4	10.3	21. 2	15. 1	13. 3
S2	5. 7	5. 7	6. 0	5. 1	5. 4	3. 5
01	3.8	3. 6	2. 4	7. 2	4. 9	4. 7