海洋レーダによる 伊勢湾表層塩分の定量的評価 渡久地 優

(琉球大学大学院 理工学研究科)

藤井 智史

(琉球大学)

研究の背景

海洋レーダによる海洋観測

- ・ 海面からの散乱波が十分な強度が必要
- 後方散乱波電力は海表面の塩分(電気伝導度)に依存. 河川出水⇒塩分の低下⇒受信電力の低下.
- ・ レーダ観測が塩分の影響を受ける
 ⇔レーダによって塩分が観測可能!

塩分が観測できたら...

- ・ 流速観測と並行した塩分観測
- CTD, 衛星ベースの観測(≧3日)よりも
 低コスト/高時間分解能

塩分観測の現状

- ・ 有明海でのVHFレーダによる定性的検証のみ(吉井, 2009).
- ・ 他の海域でも適用可能?HFレーダでは? (使用する周波数が変われば減衰特性も変換する)

伊勢湾に設置されたHFレーダで定量的な検証を試みる.

研究の背景

伊勢湾の環境

- **湾奥からの河川流入(木曽三川),湾口から黒潮由来の海水** →エスチュアリー循環が卓越
- 夏季に河川流量増加によって発達する貧酸素水塊
 - ・栄養塩, 有機物の流入
 - ・くぼんだ湾中央で成層発達→貧酸素水塊の発生→漁業への被害
- 河川水の大規模な流入が漁獲量等へ大きく影響 →リアルタイムでの監視が必要.

伊勢湾再生に向けた産学官の取り組みによって水質は改善. しかし,未だ<u>豊かな漁場</u>ではない.

(湾内でレーダ3局,水質定点観測5箇所)

継続的かつ詳細な<u>環境管理</u>が重要 海洋レーダによって河川プルームの挙動を把握できれば 強力なツールとなる.

実際にアプリケーションとして稼働させる前に方法を精査する必要がある

研究の背景(伊勢湾の環境観測への取り組み)

研究の背景

本研究の目的

- 伊勢湾に設置された24.5MHzHFレーダによる定量的な表層塩分(Sea Surface Salinity, SSS)の評価
 - ・レーダによるSSS推定値と水質定点観測(CTD)による比較を定量的に評価
 - ・吉井(2009)の方法による塩分計算が伊勢湾(24MHz,HFレーダ)でも適用可能か?
- ・ レーダによる塩分観測の需要は十分にあるが,具体的な検証例はほとんどない→実績を少しずつ蓄積する必要がある.
- ・ 本研究で対称とするもの
 - ・定点観測との定量的比較
 - ・SSSの表層分布計算. 流速との整合性の確認(モデルとの比較は未検証. 今後の課題.)

本資料のながれ

- ・ 海面の散乱点がレーダーの受信電力に影響を与える要因の整理
 ⇒これらの要因とレーダーの受電力との関係式を導出
- 2016年の約1年間のデータを使用
 - ・出水時の挙動と比較
- ・ 本手法が持つ課題について検討

レーダから距離 R 地点

レーダ方程式において受信電力Precを定数パラメターβを使用して伝搬に依存しない項をまとめる

 $P_{rec} = \frac{P_t G_t \sigma_b A_s A_r}{(4\pi R^2)^2} A^4 = \beta \frac{\sigma_b}{R^3} A^4$

レーダからの 距離R 地点における受信電力は 減衰係数A と 散乱断面積 σ_b の変化にのみ影響を受ける.

レーダ散乱断面積 $\sigma_b =$ 波浪フペクトルS(+2k)と下部棋質の電気伝道度 σ

波浪スペクトル $S(\pm 2k)$ と下部媒質の電気伝導度 σ の影響を受ける.

レーダ散乱断面積 σ_b $\sigma_b(\omega_D) = 2^6 \pi k_0^4 X(\sigma) \times \sum_{m=\pm 1}^{Barrick(1972)} S(-2mk_0) \delta(\omega_D - m\omega_b) = X(\sigma)S(\pm 2k)$

実際は、複素比誘電率 $\kappa = \varepsilon + j \frac{\sigma}{\omega \varepsilon_0}$ の影響を受けるが、電気伝導度 σ み変化する. 誘電率は水質の影響を受けない定数($\varepsilon = 80$)なので定数とみなす.

レーダ方程式において受信電力Precを定数パラメターβを使用して伝搬に依存しない項をまとめる

レーダから距離 R 地点

$$P_{rec} = \frac{P_t G_t \sigma_b A_s A_r}{(4\pi R^2)^2} A^4 = \beta \frac{\sigma_b}{R^3} A^4$$

レーダからの 距離R 地点における受信電力は 減衰係数A と 散乱断面積 σ_b の変化にのみ影響を受ける.

減衰係数A =

距離Rと下部媒質の電気伝導度 σ の影響を受ける (Knight and Robson, 1984 による経験式).

滅衰係数A
$$A = A_0 - (A_0 - A_{90})\sin(b) = A(\sigma, R)$$
$$A_0 = \frac{2 + 0.33p}{2 + p + 0.6p^2} \qquad A_{90} = \frac{2 + 170p}{2 + 210p + 310p^2} \qquad p = \frac{\pi R}{\lambda} \frac{1}{\sqrt{(\varepsilon + 1)^2 + (60\sigma\lambda)^2}} \qquad b = \tan^{-1}\left[\frac{(\varepsilon + 1)}{60\sigma\lambda}\right]$$

誘電率は水質の影響を受けない定数($\epsilon = 80$)なので定数とみなす. 波長 λ も観測で不変とする.

減衰係数は距離と電気伝導度の関数で分けられると仮定すると $A(\sigma, R) = A_1(\sigma) + A_2(R)$ R > 10 km

- ・Bは時不変と仮定
- ・対数スケールにして, ある時刻との差分をとると

$$\bigvee$$
 X と A_1 の項をまとめてZとして扱う

$$\Delta P(\sigma) = (S_1 - S_0) + \{X(\sigma_1) + A_1(\sigma_1) - X(\sigma_0) + A_1(\sigma_0)\}$$
$$= (S_1 - S_0) + Z(\sigma_1) - Z(\sigma_0)$$
$$= \underline{\Delta S + \Delta Z} (: Z(\sigma) = X(\sigma) + A_1(\sigma))$$

関数 S と Z の決定が必要

関数の決定

基準値を求めれば任意の時刻の受信電力(および風速)の変化から電気伝導度の値が推定可能

 $\Delta P = \Delta S + \Delta Z$

電気伝導度項 Z: 直線でモデル化 波浪スペクトル項S:対数でモデル化 $\Delta S = (S_1 - S_0) = \alpha (\log U_1 - \log U_0)$ $\Delta Z = (Z_1 - Z_0) = \beta(\sigma_1 - \sigma_0)$ 湾内の波浪は主に風によって引き起こされる 吉井(2009)と同様に経験的に直線で近似 Bragg散乱する波浪からの反射は通常5m/s程度まで上昇し

一定のレベルに飽和.風速0m/sで無限小

SeaSondeによる汽水域での実験(Halverson et al., 2017)

$$\sigma_1 = \frac{(P_1 - P_0) - (S_1 - S_0)}{\beta} + \sigma_0$$
海上保安庁測量船による海水温度(1回/月)
UNESCO(1981)による実用塩分の定義

塩分

index: 0: reference 1: measurement

使用データ

国土交通省中部地方整備局による環境のモニタリング・HFレーダ3台 → 鍋田局を使用
中心周波数:24.5 MHz
受信アンテナ:3エレ八木アンテナ8本 (DBF方式)
距離分解能:1.5 km
角度分解能:7.5 deg
データ出力:1時間

Table 1. System specifications of the high-frequency (HF) radar.

Parameter	Value
Beam forming method	Digital beamforming (DBF)
Radar type	Frequency modulated interrupted continuous wave (FMICW)
Center frequency	24.515 MHz
Sweep bandwidth	100 kHz
Frequency sweep interval	0.5 s
Maximum transmission power	200 W
Range resolution	1.5 km
Azimuth resolution	7.5°
Antenna type	1 transmission and 8 receiving antenna of 3-element Yagi
Data update cycle	1 h

関数の決定 一波浪スペクトル項ー

 $\Delta S = (S_1 - S_0) = \alpha(\log U_1 - \log U_0)$

- ・ 波浪からの反射は通常5m/s程度まで上昇し,一定のレベルに飽和
- VHFレーダ@有明海でも同様の挙動(吉井,2009)
- 伊勢湾北風時にこの仮定と異なる応答
- 伊勢では風況の明確な季節変化(夏季:南風,冬季:北風)

関数の決定 一波浪スペクトル項ー

波浪スペクトル項 S : 対数でモデル化 $\Delta S = (S_1 - S_0) = \alpha(\log U_1 - \log U_0)$

- 波浪からの反射は通常5m/s程度まで上昇し、一定のレベルに飽和
- VHFレーダ@有明海でも同様の挙動(吉井,2009)
- 伊勢湾北風時にこの仮定と異なる応答(後で考察)
- 伊勢では風況の明確な季節変化(夏季:南風,冬季:北風)

モデル化が可能な南風(夏季)でパラメタを計算

関数の決定 一波浪スペクトル項ー

基準値を求めれば任意の時刻の受信電力(および風速)の変化から電気伝導度の値を推定可能 $\Delta P = \Delta S + \Delta Z$

波浪スペクトル項 S

基準値を求めれば任意の時刻の受信電力(および風速)の変化から電気伝導度の値を推定可能 $\Delta P = \Delta S + \Delta Z$

電気伝導度項 Z

関数の決定

結果 定点観測との比較(夏季)

結果 定点観測との比較(夏季)

結果 定点観測との比較(冬季)

結果 SSSの面分布 (夏季 大量出水時)

- ・ データの欠測とノイズが多かったので 25h平均
- 10 psu 未満の水塊の挙動が流速と整合

Sea Surface Salinity (psu)

波浪スペクトル項(風波)の推定について

Kiso riv.

MO

約10km

Ibi riv. & Nagara riv.

IMA

海洋レーダが観測する波($f_w = 0.505 \text{ Hz}$) における波浪スペクトルの理論値(JONSWAP)

$$s_{J}(f_{w}) = \alpha g^{2}(2\pi)^{-4} f_{w}^{-5} \exp\left[-\frac{5}{4}\left(\frac{f_{w}}{f_{wp}}\right)^{-4}\right] \gamma^{\exp\left[-\frac{(f_{w}-f_{wp})^{2}}{2\sigma_{j}^{2}f_{wp}^{2}}\right]}, \qquad \alpha = 0.076 \left(\frac{U_{10}^{2}}{gF}\right)^{0.22}, \\ f_{wp} = 3.5 \left(\frac{g^{2}}{U_{10}F}\right)^{0.33}, \text{ and } \sigma_{j} = \begin{cases} 0.07 & f_{w} \leq f_{wp} \\ 0.09 & f_{w} > f_{wp} \end{cases}, \end{cases}$$

$$\gamma : \text{ peak enhancement factor}$$
$$\gamma = 1.0$$
 実線 (Pierson-Moskowitz スペクトル : 十分に発達した風波のスペクトル)
$$\gamma = 3.3$$
 点線 (JONSWAP スペクトル : 発達過程にある風波のスペクトル)

波浪スペクトル項の推定について

まとめ

結果

・ 伊勢湾に設置されたHFレーダ(24.5MHz)による定量的な表層塩分の評価を行った.

・吉井(2009)の方法による塩分計算

・ レーダによるSSS推定値と定点観測データとの比較

- ・受信電力に対する風の影響を除去: RMSEは4.42 psu、そうでない場合は5.04psu
- ・受信電力に対する風の影響を除去,日平均(25h平均)でRMSE 3.32psu
- ・表層塩分の面分布は表層流速や既往の研究結果と矛盾しなかった

課題と今後の展望

- ・地形の特性によっては波浪スペクトルの見積もりが困難
 →どのような関数を使用するか
- ・ 表層塩分分布の物理的解釈
 →数値シミュレーション等を使用した現象の物理的解釈が必要
- 2局以上のレーダを用いた検証 →海洋レーダは通常2局以上で使用するため,応用が可能.