照射下における原子炉圧力容器鋼 の点欠陥挙動に関する考察

京都大学原子炉実験所 義家敏正

背景

 原子力安全・保安院の「高経年化技術評価に関する意見聴取 会」で公開されている多くのデータは原子炉圧力容器鋼の照射 脆化を考える上で貴重なものである。特に最近の原子炉圧力容 器鋼のサーベランス試験片のRTNDT上昇と照射損傷構造との 関連は自明でないことが明らかになった。例えば九州電力玄海1 号機の最近2回の結果では、3次元アトムプローブや透過電子顕 微鏡観察結果には大きな差がないのに、RTNDTは大幅に上昇 している。析出や偏析は観測されているが、点欠陥集合体の量 は非常に少ない。特に原子空孔集合体に関する情報がない。

(a) 明視野像

(b) 暗視野像

高経年化技術評価に関する意見聴取会

平成24年3月6日 九州電力株式会社

Fe, JMTR, 573K

473K 0.061dpa 573K 0.091dpa 623K 0.27dpa 673K 0.24dpa

中性子照射した原子炉圧力容器鋼 290°C、0.06dpa

363K以下で中性子照射したオーステナイト系ステンレス鋼とそのモデル合金のS316鋼の損傷組織

試料	т _{av} (ps)	т ₁ (ps)	т ₂ (ps)	I 2 (%)
Ni	271 ± 1	161 ± 2	403 ± 4	46 ± 1
Fe-Cr-Ni	183 ± 1	169 ± 1	486 ± 28	4 ± 1
Fe-Cr-Ni-Mn- Mo	176 ± 1	135 ± 8	195 ± 4	67 ± 9
Fe-Cr-Ni-Mn- Mo-Si	177 ± 1	128 ± 8	193 ± 3	73 ± 7
Fe-Cr-Ni-Mn- Mo-Si-Ti	176 ± 1	114 ± 9	187 ± 2	82 ± 4
Ti添加改良 型316	154 ± 1	50 ± 3	174 ± 1	84 ± 1
SUS316	181 ± 1			
SUS304	185 ± 1			

363K以下でBR-2を用いて約0.2dpaまで中性子照射した試料の陽電 子寿命測定結果。測定は全て室温。T_{av}は平均寿命、T₁、T₂、I₂ はそれぞれ短寿命、長寿命、長寿命の強度。

573Kで中性子照射したオーステナイト系ステンレス鋼とそのモデル合金のS316鋼の損傷組織

試料	т _{av} (ps)	т ₁ (ps)	т ₂ (ps)	I ₂ (%)
Ni	140 ± 1	111 ± 1	364 ± 4	12 ± 1
Fe-Cr-Ni	155 ± 1	103 ± 1	424 ± 3	17± 1
Fe-Cr-Ni-Mn- Mo	134 ± 1	103 ± 1	339 ± 4	13 ± 9
Fe-Cr-Ni-Mn- Mo-Si	124 ± 1	95 ± 1	196 ± 5	25 ± 2
Fe-Cr-Ni-Mn- Mo-Si-Ti	122 ± 1	84 ± 2	169 ± 3	39 ± 2
Ti添加改良 型316	130 ± 1	50 ± 5	136 ± 1	87 ± 1
SUS316L	133 ± 1	59 ± 6	139 ± 1	87 ± 2
SUS316	130 ± 1	61 ± 7	135 ± 1	88 ± 2
SUS304	129 ± 1	60 ± 7	134 ± 1	88 ± 2

573KでKURを用いて1.6x10⁻³dpaまで中性子照射した試料の陽電子 寿命測定結果。測定は全て室温。T_{av}は平均寿命、T₁、T₂、I₂は それぞれ短寿命、長寿命、長寿命の強度。

573K中性子照射したオーステナイト系ステンレス 鋼とそのモデル合金のS316鋼の損傷組織

試料	T _{av} (ps)	т ₁ (ps)	т ₂ (ps)	I ₂ (%)	т ₃ (ps)	I 3 (%)
Ni	195 ± 1	54 ± 7	154 ± 3	70 ± 1	433 ± 7	17 ± 1
Fe-Cr-Ni	233 ± 1	39 ± 5	164 ± 2	68 ± 1	511 ± 5	21 ± 1
Fe-Cr-Ni- Mn-Mo	273 ± 1	46 ± 4	162 ± 3	55 ± 1	523 ± 4	29 ± 1
Fe-Cr-Ni- Mn-Mo-Si	148 ± 1	47 ± 2	157 ± 1	79 ± 1	489 ± 33	2 ± 1
Fe-Cr-Ni- Mn-Mo-Si-Ti	156 ± 1	53 ± 2	161 ± 1	72 ± 1	549 ± 14	4 ± 1
Ti添加改良型 316	148 ± 1	—	—	_	—	_
SUS316L	149 ± 1			—	_	—
SUS316	149 ± 1					
SUS304	146 ± 1					

573KでBR-2を用いて約0.20dpaまで中性子照射した試料の陽電子寿命測定結果。測定は全て室温。T、は平均寿命、T₁、T₂、T₃、*I*2、*I*3はそれぞれ短寿命、中間寿命、長寿命、中間寿命と長寿命の強度。

Fig.1 Temperature dependence of defect structures of bulk specimens in Ni, Fe-15Cr-16Ni and improved SUS316 irradiated by the JMTR to 1.1×10^{24} n/m³, 2.5×10^{23} n/m³, 3.7×10^{23} n/m³, 1.1×10^{24} n/m³, 9.6×10^{23} n/m³ at 373K, 473K, 573K, 623K and 673K, respectively. Defect structures of improved SUS316 was not observed at 623K.

Positron annihilation coincidence Doppler broadening measurements

CDB spectrum

- E_1 , E_2 : two emitted γ ray energy p_L : Momentum of electrons
- m : electron rest mass
- c : lighit velocity
- E_b : binding energy of electrons with bulk

S-parameter & W-parameter

Coincidence Doppler broadening Measurements of Neutron irradiated Fe-0.6wt.%Cu at 573K

Positron Annihilation Lifetime of Neutron Irradiated Fe-0.6wt.%Cu,573K

S-Parameter

Model description (1)

Model description (2)

Mobile defects: interstitials, vacancies, vacancy-Cu pairs

Clusters: interstitial type dislocation loops, voids, Cu-vacancy clusters

Thermal dissociation: vacancy-Cu pairs, voids

No interaction of interstitials with Cu

Nucleation of clusters: di-interstitials, di-vacancies and directly in cascades.

Materials parameters: Fe

Model description (3)

Concentration of interstitial type dislocation loops; C_{IC}

Total interstitials in interstitial type dislocation loops : R_1

$$R_I = C_I \times \pi L_I^2$$

Total sink efficiency of interstitials in dislocation loops : S₁

$$S_I = C_{IC} \times 2\pi L_I$$

Rate equations (1)

The change of concentration of interstitial C_{l} (fractional unit).

- C_V : vacancy concentration
- Z: cross section of the reaction

M: mobility of point defects

$$\frac{dC_{I}}{dt} = P_{L} - 2Z_{I,I}M_{R}C_{I}^{2} - Z_{I,V}(M_{I} + M_{V})C_{L}C_{V}$$

$$\frac{damage \ production}{damage \ production} \frac{1 - 1 \ recombination}{1 - 1 \ recombination} \frac{mutual \ annihilation}{mutual \ annihilation}$$

$$-Z_{I,VM}M_{I}C_{I}C_{VM} - Z_{I,IC}M_{I}C_{L}S_{I} - Z_{I,VC}M_{I}C_{L}S_{V} - Z_{I,B}M_{I}C_{I}S_{P}$$

$$\frac{1 - V - Cu \ pair \ 1 - 1 - clusters \ 1 - V - clusters \ 1 - Pricipitates}{1 - V - clusters \ 1 - V - clusters \ 1 - Pricipitates}$$

Rate equations (2)

The change of vacancy concentration C_V

$$\frac{dC_{V}}{dt} = P_{V} - 2Z_{V,V}M_{V}C_{V}^{2} - Z_{I,V}(M_{I} + M_{V})C_{I}C_{V} - Z_{V,VM}(M_{V} + M_{VM})C_{V}C_{VM}$$
$$- Z_{V,V}M_{V}C_{V}S_{V} - Z_{V,IC}M_{V}C_{V}S_{I} - Z_{V,B}M_{V}C_{V}S_{P} - Z_{V,M}M_{V}C_{V}C_{M}$$
$$+ B_{VM}M_{V}C_{VM} + B_{VP}VM_{V}C_{VM} - M_{V}C_{V}C_{S} - N_{V}P_{VC}$$

The change of vacancy-Cu pairs

$$\frac{dC_{VM}}{dt} = -Z_{I,VM} C_I C_{VM} - Z_{V,M} (M_V + M_{VM}) C_V C_{VM}$$
$$-2Z_{VM,VM} M_{VM} C_{VM} C_{VM} - Z_{VM,M} M_{VM} C_{VM} C_M - B_{V,VM} M_V C_{VM}$$
$$-M_{VM} C_{VM} S_I + M_{V,M} C_{VM} S_V$$

Rate equations (3)

Total sink efficiency of clusters

$$S_{V} = (48\pi^{2}R_{V}C_{VC}^{2})^{1/3}$$

$$S_{I} = 2(\pi R_{I}C_{IC})^{1/2}$$

$$S_{P} = (48\pi^{2}(R_{PV} + R_{PM})C_{PC}^{2})^{1/3}.$$

Concentration of defect clusters

$$\frac{dC_{IC}}{dt} = P_{IC} + Z_{I,I} M_{I} C_{I}^{2}$$

$$\frac{dC_{VC}}{dt} = P_{VC} + Z_{V,V} M_{V} C_{V}^{2}$$

$$\frac{dC_{PC}}{dt} = Z_{V,VM} (M_{V} + M_{VM}) C_{V} C_{VM} + Z_{VM,VM} M_{VM} C_{VM} C_{VM} + Z_{Vm,M} M_{VM} C_{VM} C_{M}$$

These differential equations were solved numerically using GEAR method developed by Hindmarsh and Byrne.

Reaction kinetic analysis of defect evolution in Fe-Cu with dose rate of 1.5x10⁻⁸ dpa/s at 573 K

原子空孔とCuの結合エネルギー:0.1eV

反応速度論に基づいた解析結果(1)

反応速度論に基づいた解析結果(2)

格子間原子型転位ループのバイアス効果

格子間原子集合体は透過電子顕微鏡で観察されている転位ループだけでなく、NiとMnの析出物の中にも格子間原子型転位ループとして存在するとすべきかもしれない。この場合、NiとMnの転位芯への偏析のためにひずみ場が緩和し、転位バイアス効果が小さく、原子空孔のマトリックスへの残存とボイドへの成長が起こり難いとも考えられる。

今後の課題

- 多くの添加元素の存在する中での原子空孔や 格子間原子の挙動の解明
- 多くの添加元素の存在する中での点欠陥集合体
 形成の解明
- RTNDT上昇は現在検出されている欠陥だけで 説明できるか