重照射した改良SUS316鋼における微細組織と 機械強度の相関

研究の背景

マルチスケールモデリングの観点から照射材料を見たとき、大きくは以 下の2つの過程がある。

- ・照射欠陥クラスタの発達によるミクロ組織の変化を予測すること
- ・ミクロ組織の変化から材料の機械的性質の変化を導出すること

マルチスケールモテリンクの概念 (第一原理計算から構造計算まで)	機械的性質変化のモデリング (圧力容器鋼における照射硬化の例)						
高速炉 <u>燃料被覆管材料</u> では、 <u>温度が広範</u> なため、照射に伴う <u>組織変化が多様かつ複雑</u> となる(転位組織、多種類の析出物 の形成状況の変化、転位ループ、ボイド等複数の照射欠陥ク ラスター)ことから、 <u>先行例は殆どなく、学術的知見も非常</u> に限定的である。							
分子動力学法 基礎科学の分野で 近年、かなりの高精度解析が 可能となっている。 nm µm mm m	$\Delta T_{MD} = \xi_{18} \cdot \sqrt{C_{MD}}$ $\zeta_1 \sim \zeta_{18} : \text{ one set of coefficients is determined.}$ $\Delta T = \sqrt{(\Delta T_{SC})^2 + (\Delta T_{MD})^2}$ Total shift is NOT a simple sum of the two contributions.						

1. 研究の背景および目的

研究の目的

高速炉炉心材料の使用温度範囲における照射下強度特性 変化と微細組織変化の相関関係をモデル化することを研 究の目的とする。具体的には、PNC316の中性子照射後 試験データ(強度および微細組織)の取得・整理、系統 的かつ詳細な解析作業により、強度・組織相関のモデル 化を実施する。

・照射挙動のモデル化を温度毎に分けて行い、照射後試験 データとの照合によりモデルの妥当性を検討する。 2. 供試材、実験方法

PNC316被覆管の化学組成

■供試材の化学組成(wt%)

化学成分[wt%]	С	Si	Mn	Р	S	Cr	Ni	Мо
55MK	0.052	0.82	1.83	0.028	0.009	16.52	13.84	2.49
60MK	0.054	0.78	1.72	0.028	0.003	16.22	13.45	2.35
60MS	0.056	0.80	1.91	0.028	0.002	16.50	13.77	2.59
化学成分[wt%]	Со	В	Ν	Cυ	Ti	V	Nb+Ta	
55MK	0.01	0.0031	0.003	0.01	0.080	0.01	0.079	
60MK	0.01	0.0039	0.009	0.04	0.078	0.01	0.080	
60MS	<0.01	0.0037	0.003	0.03	0.077	<0.01	0.091	

【熱処理条件】

55MK : 1080°C×1min. + CW20% 60MK : 1095°C×1min. + CW18% 60MS : 1080°C×1min. + CW20%

■中性子照射条件

 Reactor/Rig
 Dose*(dpa)
 Temp., °C

 JOYO/CMIR
 3.5-20.1 (17.5-100.5)
 502 - 734

■照射後試験

- ◆ 強度特性評価
 (硬さ測定、引張試験)
- ◆ 組織安定性評価

(金相組織観察、TEM組織観察)

*) x 10²⁶n/m² (E>0.1MeV)

照射前後におけるPNC316の代表的TEM組織

As-received ●受入れまま材
・ 冷間加工による高密度の転位組織
・ 双晶を含む変形バンドあり

- ■低温照射材(500°C程度)
- ・高密度の転位組織、Frank loopのわずかな形成
- ・照射量増大に伴う析出物とボイド数密度の増大
- ■中温照射材(550~650°C程度)
- ・転位は回復傾向(高温・高照射量ほど低密度)
- ・照射温度上昇に伴う粒内・粒界析出、Voidの粗大化
- ・微細な針状析出物(Fe₂P)形成

■高温照射材(700°C以上) ・析出物の顕著な粗大化,転位の回復,結晶粒成長

5-1 照射温度/照射量依存性の評価

照射温度と降伏強度の関係

強度・組織相関のモデル概要 (Orowanモデル)

$$\Delta \sigma_{y} = \Delta \sigma_{p} + \Delta \sigma_{needle} + \Delta \sigma_{v} + \Delta \sigma_{d} + \Delta \sigma_{D}$$

Square-root of sum of squares

$$\Delta \sigma_{y} = \sqrt{(\Delta \sigma_{p})^{2} + (\Delta \sigma_{needle})^{2} + (\Delta \sigma_{v})^{2}} + \Delta \sigma_{d} + \Delta \sigma_{D}$$

転位線
$$\Delta \sigma_d = M \alpha_2 \mu b \sqrt{\rho_2} - M \alpha_1 \mu b \sqrt{\rho_1}$$

結晶粒径 (Hall-petchの関係) $\Delta \sigma_D = k(d_2^{-\frac{1}{2}} - d_1^{-\frac{1}{2}})$
針状析出 (今回は短径を採用) $\Delta \sigma_{needle} = M \alpha \mu b (\sqrt{Nd})$
ボイド (今回は無視) $\Delta \sigma_v = M \alpha \mu b (\sqrt{Nd})$
塊状析出 (今回は無視) $\Delta \sigma_p = M \alpha \mu b (\sqrt{Nd})$

中性子照射材の実験値とモデルの比較 (**Δ**σ_yと温度)

中性子照射材の実験値とモデルの比較(強度因子の考察)

5-1 照射温度/照射量依存性の評価

照射温度と硬さ (T_{test}=RT)の関係

中性子照射材の実験値とモデルの比較(**△**σ_yと温度)

(4)組織と硬度/強度の関係に関する検討

冷間加工材 (PNC316) の転位密度と降伏応力の関係

Obstacle strengthen model

$$\sigma_{y} = \sigma_{0} + M\alpha\mu b\sqrt{\rho}$$

 σ ; yield strength

- *M*; Taylorfactor, $3.06 *_1$
- α ; barrier strength of obstacles
- μ ; shear modulus of the matrix, 74 GPa *2
- b; Burger's vector of moving dislocation, 2.546 A
- ρ ; dislocation density

*1;加藤雅治 入門転位論 裳華房 *2;ステンレス鋼便覧 日刊工業新聞社

(4)組織と硬度/強度の関係に関する検討

Bbarrier strength factor of obstacles, α , vs. Temp.

炭素固溶強化の喪失可能性 (アスペクト比1.0-1.5の析出を考慮)

7. まとめ

まとめ

■中性子照射データの豊富な改良SUS316鋼(PNC316鋼)を対象に、照射挙動のモデル化のための微細組織と機械強度のミクローマクロ相関評価を実施した。

- ・ 微細組織は<u>500°C近傍、550~650°C、650°C</u>の各温度域ごとに特徴づけられる。
- 本研究の照射条件では316鋼の降伏強度(T_{test}=T_{irr.})は低下した。硬さ (T_{test}=RT)は高温照射にて低下した。
- ・転位の強度因子aが未照射、照射で変わる可能性が示唆された。
- ・ 合金中の炭素は照射によってほぼ全て析出し、固溶強化への寄与を失うことが考えられる。
- ・ 強度因子aは温度依存しなかった。高温における固溶炭素量とaの関係 を知る必要がある。

8. 今後の予定

今後へ向けて(モデルの見直し)

	Solution hardening	Grain size	Dislocation	Small precipitate strengthening	Frank loop or black dot strengthening	Needle shape precipitate strengthening	Large precipitate strengthening	Void strengthening	•••
$\sigma_{_{y,1}}$	$\sigma_{\scriptscriptstyle s1}$	$kd_1^{-\frac{1}{2}}$	$Mlpha_{d1}\mu b\sqrt{ ho_1}$	$Mlpha_{sp}\mu b\sqrt{Nd}$	-	-	-	-	•••
$\sigma_{_{y,2}}$	$\sigma_{_{s2}}$	$kd_2^{-\frac{1}{2}}$	$Mlpha_{d2}\mu b\sqrt{ ho_2}$	-	$Mlpha_{dc}\mu b\sqrt{Nd}$	$Mlpha_n\mu b\sqrt{Nd}$	$Mlpha_{lp}\mu b\sqrt{Nd}$	$Mlpha_{v}\mu b\sqrt{Nd}$	
$\Delta \sigma_{y}$	$\Delta\sigma_{s}$	$\Delta\sigma_{_D}$	$\Delta\sigma_{_d}$	$\Delta\sigma_{\scriptscriptstyle smallprecipitate}$	$\Delta \sigma_{defect cluster}$	$\Delta \sigma_{_{needle}}$	$\Delta \sigma_{large presipitat}$		

照射前 $\sigma_{y,1} = \sigma_P + \sigma_{s1} + kd_1^{-\frac{1}{2}} + M\alpha_{d1}\mu b\sqrt{\rho_1} + M\alpha_{sp}\mu b\sqrt{Nd} + \cdots$

照射後 $\sigma_{y,2} = \sigma_P + \sigma_{s2} + kd_2^{-\frac{1}{2}} + M\alpha_{d2}\mu b\sqrt{\rho_2} + M\alpha_{dc}\mu b\sqrt{Nd} + M\alpha_n\mu b\sqrt{Nd} + \cdots$

 $\Delta \sigma_{y} = \sigma_{y,2} - \sigma_{y,1}$

■固溶強化量 ■粒界強度の項(再結晶粒界、析出を伴う粒界) ■固溶炭素のαへの寄与 **◆**熱時効材の評価