

PREDICTION OF LOWER BOUND FRACTURE TOUGHNESS IN THE TRANSITION TEMPERATURE REGION BY T_{33} -STRESS

<u>Kai LU</u>, Toshiyuki MESHII (Professor)

Nuclear Power & Energy Safety Engineering

University of Fukui

JAPAN

Table of Contents

- Background
- Motivation
 - Predict lower bound J_c for TST
- Finite Element Analysis (FEA)
 - Derivation of failure criterion for S55C
 - Validation of failure criterion to out-of-plane TST issue
 - Predict lower bound J_c for TST
 - Prediction of lower bound J_c with T_{33} -stress
- Summary and Future Plans

Background

NIVERSITY OF

• Fracture toughness J_c : test specimen size effect

Background: Size effect on J_c

- "Planar" size effect on J_c
 - Differences in crack tip constraint
 - T-stress (Larsson & Carlsson, Rice)
 - Hancock et al., O'Dowd, ...
 - $T_{11} > 0$

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \tau_{12} \end{cases} = \frac{K_{\mathrm{I}}}{\sqrt{2\pi r}} \begin{cases} \cos\frac{\theta}{2} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) \\ \cos\frac{\theta}{2} \left(1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) \\ \sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2} \end{cases} + \begin{cases} T_{11} \\ 0 \\ 0 \end{cases}$$

- Test Specimen Thickness (TST) effect on J_c
 - Wallin
 - $J_{
 m c} \propto B^{-1/2}$
 - Anderson et al.
 - Weakest Link (WL) Model

Test Specimen Thickness effect on $J_c(2)$

• Contradiction

 $-J_{\rm c} \propto B^{-1/2}$: $J_{\rm c} \rightarrow 0$ for $B \rightarrow \infty$

• TST effect on actual flaw

- Not clear : definition of B

- Meshii et al.
 - Out-of-plane constraint issue
 - Mechanical parameter T_{33}

Previous Results for S55C (1)

- Fracture toughness test
 - 0.55% carbon steel S55C at R.T.

• $P-V_g$ curve $-P_c/P_Q > 1.1 \rightarrow K_{IC}$ invalid $-J_c$ for P_c evaluated by E1820 $-K_c : K$ for P_c

2012/7/25

INIVERSITY OF

0.2

0.3

V_g mm

0.4

0.5

0.1

2012/7/25

*Toshiyuki Meshii, Tomohiro Tanaka. Engineering Fracture Mechanics. 2010;77(5):867-877
*Tomohiro Tanaka, Toshiyuki Meshii. ASME Pressure Vessels and Piping Conference, 1-7 (2010).

9

Previous Results for S55C (3)

• Exp & FEA: (S55C*)

10

Background

Motivation

– Predict lower bound J_c for TST

Motivation

Failure Criterion

- 'Planar' Failure Criterion
 - Ritchie et al. \neg
 - $\sigma_{22} \geq \sigma_{22c}$ at l_c – Shih
 - Dodds et al.
 - Critical distance: $l_c = 4\delta_t$
 - Quantified a/W effects on J_c

Background

- Motivation
 - Predict lower bound J_c for TST

FEA

– Derivation of failure criterion for S55C

Elastic-Plastic FEA Standard CT Specimen

• Model

- 1/4 symmetry (CT, B/W= 0.5, a/W=0.5)
- Side groove: removing constraint
- Circular hole $\rho = 0.004$ mm
- Material
 - J2-incremental plasticity
 - Ramberg-Osgood $n = 6.9, \ \alpha = 1.61, \ \sigma_0 = 428 \text{ MPa} \quad \frac{\varepsilon}{\varepsilon_0} = \frac{\sigma}{\sigma_0} + \alpha \left(\frac{\sigma}{\sigma_0}\right)^n$

- Maximum load
 - $K_{\rm c \ S55C} = 66 \text{ MPa m}^{1/2} (30 \text{ load steps})$
- Solver: WARP3D
 - Focused on thickness center value

BEFUKUI Derivation of Failure Criterion for S55C

• Standard CT specimen: $K_{c S55C} = 66 \text{ MPa m}^{1/2}$

Thickness Center $\begin{cases} - \text{Crack tip opening displacement } \delta_{t}: 0.04 \text{ mm} \\ - \text{Crack opening stress } \sigma_{22} (\theta=0) \text{ distribution} \end{cases}$

16

Background

- Motivation
- Predict lower bound J_c for TST

FEA

– Derivation of failure criterion for S55C

- Validation of failure criterion to out-of-plane TST issue

Validation of failure criterion for out-of-plane TST issue

• Elastic-plastic FEA for non-standard test specimen

FUKUI Validation of failure criterion for out-of-plane TST issue

Step 1: Large Stain FEA for 1/2TCT (*B/W*=0.4)

Validation of failure criterion for out-of-plane TST issue

Step 2: Extract σ_{22} ($\theta = 0$) values at $l_c = 0.16$ mm

UNIVERSITY OF

Validation of failure criterion for out-of-plane TST issue

Step 3: Derive fracture load: $P_{c \text{ FEA}}$

Step 4: Estimate
$$K_{c FEA}$$

 $K_{c FEA} = \frac{P_{c FEA}}{\sqrt{BB_N W}} f_{CT} \left(\frac{a}{W}\right)$

Validation of failure criterion for out-of-plane TST issue

• Estimated $K_{c FEA}$ for other CT & 3PB specimens

Background

Motivation

- Predict lower bound J_c for TST

FEA

- Derivation of failure criterion for S55C
- Validation of failure criterion to out-of-plane TST issue
- Predict lower bound J_c for TST

Background

Motivation

- Predict lower bound J_c for TST

FEA

- Derivation of failure criterion for S55C
- Validation of failure criterion to out-of-plane TST issue
- Predict lower bound J_c for TST
- Prediction of lower bound J_c with T_{33} -stress

FURITIAN Prediction of Lower Bound J_c with T_{33} -stress

- Model
 - 1/4 symmetry
 - Side groove: removing constraint
 - W=25 mm, *B*/W=0.25~2.0
 - Singular element: $\Delta l/a=0.0016$
- Load: $K_0 = 1$ MPa m^{1/2}
- Values at specimen center
 - K, T_{11} : little change
 - $-T_{33}$: significant change

 $-T_{33}$: a bound value for $B/W \ge 1.5$

$$\beta_{kk} = \frac{T_{kk}\sqrt{\pi a}}{K_0} \left(k = 1, 3\right)$$

2012/7/25

Prediction of Lower Bound J_c with T_{33} -stress

• Lower bound Bound Bound: A tooki to B by 2335 stress

Background

Motivation

- Predict lower bound J_c for TST

FEA

- Derivation of failure criterion for S55C
- Validation of failure criterion to out-of-plane TST issue
- Predict lower bound J_c for TST
- Prediction of lower bound J_c with T_{33} -stress

Summary and Future Plans

Summary & Future Plans

- The 'planar' failure criterion
- Applicable for out-of-plane TST issue
- Lower bound J_c for S55C: $B/W \ge 1.5$
- Lower bound J_c could be predicted by T_{33} -stress

Next study plan...

- Validate the lower bound J_c by fracture toughness test
- Numerical study for different materials and test specimens
- Correlate test specimen J_c with actual flaw

 σ_{22} distribution ($\theta = 0$) at $K_c = 66$ MPa m^{1/2}

CT-*W*=25 mm-*B*/*W*=0.25~0.5

FUKUI

 σ_{22} distribution ($\theta = 0$) at $K_{c \ S55C} = 66 \ MPa \ m^{1/2}$ CT-W=25 mm-B/W=0.25~0.5

2012/7/25

 $(l_c=0.16 \text{ mm}, \sigma_{22c}=1530 \text{ MPa})$

31

CT-W=25 mm-B/W=0.5-a/W=0.5

S55C: σ_0 = 428 MPa, α =1.61, *n*=6.9, *E*=206 GPa

 $K_{\rm c}$ _{S55C} = 66 MPa m^{1/2}

2012/7/25

J values at thickness center:

32

- CT-*W*=25 mm-*B*/*W*=0.5-*a*/*W*=0.5
- S55C: σ_0 = 428 MPa, α =1.61, *n*=6.9, *E*=206 GPa
- $K_{\rm c \ S55C} = 66 \ {\rm MPa} \ {\rm m}^{1/2}$

J values in thickness direction:

E=206 GPa, *v*=0.3

Elastic FEA results in thickness direction:

2012/7/25

6 FUKUI Q: Why TST effect on J_c could be expressed by T_{33} -stress ? A: Out-of-plane ε_{33} at specimen thickness center

UNIVERSITY OF

Q: Why the normalized lower bound $J_{c FEA}$ is not equal to plane strain J.

A: Full plastic 2D J solution according to the method by EPRI, in this work, we conducted 3D FEA for 3PB specimen.

UNIVERSITY OF FUK

Q: How do you distinguish between shallow cracked specimen and deep cracked specimen?

A: By now, no standard could be follow. shallow crack deep crack However, In Dodds et. al's works, they defined a/W = 0.15 and a/W=0.5.

Q: What is the new point of view in your works?

UNIVERSITY OF

38

FUKUI

Q: In elastic-plastic FEA, how did you define the keyhole size ρ at the crack tip ?

A: McMeeking & Parks : CTOD $\geq 5\rho$. In this work, CTOD/ $\rho \geq 10\rho$

 δ_t : Crack tip opening displacement; CTOD

Q: The σ_{22c} value of the failure criterion obtained in this work is very large.

A: For three dimensional cracks, considering triaxial stress state, the equivalent Mises stress was below the true tensile stress $\sigma_{\rm B}$.

