照射過程での純鉄・低合金鋼の磁気特性変化 -冷間圧延した純鉄の磁性-

> * 鎌田康寛¹, J N Mohapatra¹, 菊池弘昭¹, 小林悟¹, 渡辺英雄²

¹ 岩手大学工学部マテリアル工学科 ² 九州大学応用力学研究所

2012.7.24-25, 九大応力研研究会

●中性子照射による原子炉圧力容器鋼の磁気特性の変化 (磁気ヒステリシス曲線)

・・・照射脆化の非破壊評価の可能性を探る

- ① 磁気特性と照射欠陥
 - ・・・考え方、磁区・磁壁の可視化
- ② これまでの研究
 - ・・・ 中性子照射中のその場磁気計測
- ③冷間圧延した純鉄の熱時効・中性子照射と磁性
 - ・・・ 照射前に存在する転位の影響

①磁気特性と照射欠陥(考え方)

① 磁気特性と照射欠陥 (電子線照射+磁壁観察)

Kyusyu Univ. HVEM

Fe, 200°C, 0.15dpa (2.5 × 10⁻⁴dpa/s)

Fig. Interaction between dislocation loops of e-irradiated iron & magnetic domain wall (Lorentz-TEM images).

照射欠陥が磁壁の移動を妨げている (弾性磁気相互作用)→保磁力の増加

②これまでの研究(中性子照射中のその場磁気計測)

Irradiation : at Japan Materials Test Reactor

Materials : (1) pure-Fe (4N), (2) RPV steel (A533B)

	()							(wt.%)	
С	Si	Mn	Р	S	Ni	Cr	Cu	Мо	
0.19	0.19	1.47	< 0.003	0.001	0.64	0.14	0.16	0.51	

N:880°C • 60min (AC) +T:670°C • 80min(AC)

Temp : 290° C, Fluence : 5×10^{19} n/cm²

(old-type RPV steel)

②これまでの研究(中性子照射中のその場磁気計測)

②これまでの研究(中性子照射中のその場磁気計測)

●その場磁気計測 アニールした純鉄

保磁力:增加

Large dislocation loops

Growth of dislocation loops

●その場磁気計測 A533B鋼(Cu=0.16%)

減少

転位の応力場の緩和?

③冷間圧延した純鉄の熱時効・中性子照射と磁性(方法)

● 試料:

多結晶純鉄(99.99%)

未圧延材、70%圧延材

リング状(OD=10, ID=6, t=0.4mm) 磁性(熱時効) 板状(20×6×0.4mm) 磁性(照射)、硬度測定

(1) 70°C、(2) 300°Cで1000hrs

● 中性子照射(BR2):

(1) at 70°C up to $1.5 \times 10^{24} \text{ n/m}^2$ (715hrs) (2) at 300°C up to $1.0 \times 10^{24} \text{ n/m}^2$ (1195hrs)

● 硬度·磁気測定

Temp.	Hardr	iess	measure	Magnetic measurement					
(°C)	unaged	TA	unirr.	irr.	unaged	TA	unirr.	irr.	
70	70 Plate1		Plate3	Plate4	Ring	Ring1		Plate4	
300 Plate2		2		Plate5	Ring2	2	Plate	e5	

③ 冷間圧延した純鉄の熱時効・中性子照射と磁性(磁気計測)

Fig. Pictures of the measurement setup at IMR, Tohoku Univ., in Oarai.

●熱時効・照射による純鉄(70%圧延)の硬度変化

Temp.	Ther	mal Ageir	ng	Irradiation			
(°C)	Hv		ΔHv		ΔHv		
	unaged	TA		unirr.	irr.		
70	173±9	164 ± 8	- 9	178±3	194 ± 9	16	
300	150 ± 8	106 ± 3	- 44		175 ± 7	- 3	

●熱時効前後での純鉄(70%圧延)の磁化曲線

●照射前後での純鉄(70%圧延)の磁化曲線

●硬度と保磁力の変化量の比較

磁気特性・・・照射前から存在する転位の応力場の変化(消滅・緩和)に非常に敏感

Temp. (°C)	The	rmal Agein	Ig	Irradiation			
	Hc (A/m)		Δ Hc	Hc (A/m)		Δ Hc	
	unaged	TA		unirr.	irr.		
70	285.7	282.0	-3.7	311.9	234.4	-77.5	
300	257.3	153.5	-103.8	340.8	132.4	-208.4	

●照射脆化と磁気特性(ヒステリシス曲線)

- ① 磁気特性と照射欠陥
- ・・・ 電子線照射で導入した純鉄の格子欠陥による、磁壁のピン止めを確認。
- ② これまでの研究
 - ・・・ 中性子照射中のその場磁気計測 照射量に対して、純鉄の保磁力は単調増加。 A533B鋼では低照射量で増加、高照射量で<u>緩やかに減少。</u>
- ③ 冷間圧延した純鉄の熱時効・中性子照射と磁性 70℃熱時効材を除き、すべての試料で<u>保磁力は減少。</u>
 - → 照射前に存在する転位の応力場の変化に敏感。