国立大学法人九州大学 応用力学研究所

English 所内限定 Search Sitemap Site Policy

イベント

  • Home
  • 研究活動
  • イベント
  • 2017 年度

イベント開催のご案内

[ セミナー ]
帯対流圏面遷移層に関する数値モデルと観測に関する
セミナー
日 時 2018 年 2 月 6 日(火) 14 時 00 分 ~ (1時間程度)
場 所 九州大学応用力学研究所 西棟6階 多目的研究交流室(W601 号室)  * アクセス案内はこちら
 
題 目 Modeling and (Aircraft) Observations of the Tropical Tropopause Layer
講演者 Dr. Rei Ueyama (NASA Ames Research Center)
Abstract The Tropical Tropopause Layer (TTL), a transition layer in the upper troposphere and the lower stratosphere (~14-18 km) in the tropics, is the main gateway of various tropospheric trace gases and aerosols entering the stratosphere. While the conceptual model of the TTL and its properties are generally well established, detailed mechanisms involving the roles of deep convection, atmospheric waves and cloud microphysical processes remain an active area of research and target of airborne missions.

In this talk, I will first discuss the role of convection on lower stratospheric water vapor and upper tropospheric cirrus cloud occurrence based on an analysis of two sets of complementary transport and cloud microphysical models driven by ERA-Interim meteorological fields. Convective influence is diagnosed using geostationary satellite-derived convective cloud-top altitudes that are adjusted to match the CloudSat, CALIPSO, and CATS measurements. The model results are evaluated by comparison with satellite observations (e.g., Aura MLS, CALIPSO CALIOP).

I will then highlight some results from the NASA POSIDON (Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection) Experiment which took place in Guam in October 2016 using the NASA WB-57F high altitude research aircraft. The goals of the mission were to:

1. validate satellite observations of low O3 in the western tropical Pacific and evaluate the hypothesis of a corresponding OH minimum in the upper troposphere and its possible impact on very short-lived species and sulfur abundances;

2. investigate the transport and chemistry of sulfur species in the TTL over the convectively active western tropical Pacific;

3. assess the validity of global chemistry transport model projections of sulfur emissions on stratospheric sulfate aerosol; and

4. obtain in situ measurements of the microphysical properties and water content of anvil cirrus clouds detrained from deep convection as well as thin cirrus clouds near the tropopause that regulate the abundance of water vapor entering the stratosphere.
 
 
 

[問い合わせ]
大気海洋環境研究センター 気候変動科学分野
江口 菜穂
 
 

PAGE TOP